Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 715-721    DOI: 10.3724/SP.J.1037.2014.00021
Current Issue | Archive | Adv Search |
EFFECT OF ANODIZING TREATMENT ON BENDING FATIGUE PROPERTIES OF 2014-T6 ALUMINIUM ALLOY
ZHANG Yanbin, ZHANG Limin(), ZHANG Jiwang, ZENG Jing
State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031
Cite this article: 

ZHANG Yanbin, ZHANG Limin, ZHANG Jiwang, ZENG Jing. EFFECT OF ANODIZING TREATMENT ON BENDING FATIGUE PROPERTIES OF 2014-T6 ALUMINIUM ALLOY. Acta Metall Sin, 2014, 50(6): 715-721.

Download:  HTML  PDF(6035KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Anodizing treatment was performed on the notched portion of fatigue specimens of the 2014-T6 aluminium alloy. The thicknesses of the oxide layer induced by the treatment were 5, 10 and 20 μm, respectively. Fatigue tests were carried out on the specimens with and without anodizing treatment using a rotating bending fatigue machine. According to experimental results, the effect of anodizing treatment on the bending fatigue properties of the aluminium alloy was analyzed. In addition, the dependence of the bending fatigue properties of the material upon the thickness of the oxide layer was discussed. The results indicate that the anodizing treatment decreases the bending fatigue life of the aluminium alloy under low and medium stress. With increasing thickness of the oxide layer, the crack initiation site transfers from the oxide layer surface to the substrate surface and the bending fatigue life of the alloy decreases; however, when the oxide layer thickness increases to a certain extent, the S-N curve above the fatigue limit of the alloy does not change even if the thickness continues to increase.

Key words:  aluminium alloy      anodizing treatment      thickness of the oxide layer      fatigue property      fatigue limit     
Received:  08 January 2014     
ZTFLH:  TG146.2  
  TG115.5  
Fund: Supported by National Natural Science Foundation of China (No.51305363)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2014.00021     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/715

Fig.1  Schematic of shape and dimensions of fatigue specimen (unit: mm)
Fig.2  SEM images of fatigue specimen surfaces on notched portion

(a) surface without anodizing treatment (sample No.1)

(b) surface with oxide layer 5 μm (sample No.2)

(c) surface with oxide layer 10 μm (sample No.3)

(d) surface with oxide layer 20 μm (sample No.4)

Fig.3  S-N curves of fatigue specimens
Fig.4  Schematic of stress distribution on the cross-section of material with oxide layer
σa / MPa 5 μm 10 μm 20 μm
350 1.60 2.27 3.21
300 1.37 1.94 2.75
275 1.26 1.78 2.52
250 1.15 1.62 2.29
225 1.03 1.46 2.06
200 0.92 1.30 1.83
Table 1  Relationship between stress intensity factor (ΔK)and initial crack depth (thickness of oxide layer)

(MPa·m1/2)

Fig.5  Fracture morphologies of fatigue sample No.1 (σa=300 MPa, Nf=99510 cyc)

(a) macroscopic fracture surface

(b) enlarge image of crack initiation site in Fig.5a

Fig.6  Fracture morphologies of fatigue sample No.2 (σa=300 MPa, Nf=42640 cyc)

(a) macroscopic fracture surface

(b) enlarge image of crack initiation site in Fig.6a

Fig.7  Fracture morphologies of fatigue sample No.3 (σa=300 MPa, Nf=19420 cyc)

(a) macroscopic fracture surface

(b) enlarge image of crack initiation site in Fig.7a

Fig.8  Fracture morphologies of fatigue sample No.4 (σa=300 MPa, Nf=24670 cyc)

(a) macroscopic fracture surface

(b) enlarge image of crack initiation site in Fig.8a

[1] Heinz A, Haszler A, Keidel C. Mater Sci Eng, 2000; A280: 102
[2] Staley J T, Liu J, Hunt W H J. Adv Mater Proc, 1997; 10: 17
[3] Starke E A, Staley J T. Prog Aerospace Sci, 1996; 32: 131
[4] Liu C, Yao J, Lu W. J Jiamusi Univ, 2006; 24: 559
(刘闯, 姚嘉, 卢伟. 佳木斯大学学报, 2006; 24: 559)
[5] Ding X Q, He G Q, Chen C S, Liu X S, Zhu Z Y. J Mater Sci Eng, 2005; 23: 302
(丁向群, 何国求, 陈成澍, 刘小山, 朱正宇. 材料科学与工程学报, 2005; 23: 302)
[6] Sakai Y. J Jpn Inst Light Met, 2006; 55: 584
[7] Guzman L, Bonini G, Adami M, Ossi P M, Miotello A, Vittori-Antisari M, Serventi A M, Voltolini E. Surf Coat Technol, 1996; 83: 284
[8] Zhang G H, Huang G Q, Xu P, Yu M Z. J China Univ Metrology, 2010; 21: 174
(张高会, 黄国青, 徐鹏, 于明洲. 中国计量学院学报, 2010; 21: 174)
[9] Chu X, Ren X, Hao S Z, Xu Y. Mater Heat Treat, 2010; 39: 123
(初鑫, 任鑫, 郝胜智, 徐洋. 热加工工艺, 2010; 39: 123)
[10] Liu B, Fang Z G, Wang H B, Wang T. Corros Prot, 2012; 33: 1005
(刘斌, 方志刚, 王虹斌, 王涛. 腐蚀与防护, 2012; 33: 1005)
[11] Critchlow G W, Brewis D M. Int J Adhes Adhes, 1996; 16: 255
[12] Fernandes J C S, Ferreira M G S, Haddow D B, Goruppa A, Short R, Dixon D G. Surf Coat Technol, 2002; 154: 8
[13] Critchlow G W, Yendall K A, Bahrani D, Quinn A, Andrews F. Int J Adhes Adhes, 2006; 26: 419
[14] Li Y L. PhD Dissertation, Chongqing University, 2003
(李玉兰. 重庆大学博士学位论文, 2003)
[15] Rodopoilos C A, Romero J S, Curtis S A, Rios E R, Peyre P. ASM Int, 2003; 12: 414
[16] Honda T, Ramulu M, Kobayashi A S. J ASTM Int, 2005; 2: 39
[17] Lonyuk B, Apachitei I, Duszczyk J. Surf Coat Technol, 2007; 201: 8688
[18] Yakovleva N M, Anicai L, Yakovlev A N, Dima L, Khanina E Y, Buda M, Chupakhina E A. Thin Solid Films, 2002; 416: 16
[19] Yan C, Li L J, Jin X Z, Liu J C, Chen P. Chin J Nonferrous Met, 2008; 18: 254
(鄢 锉, 李力钧, 金湘中, 刘继常, 陈 沛. 中国有色金属学报, 2008; 18: 254)
[20] Ferdinand P B, Johnston E R J, Dewolf J T, Mazurek D F. Mechanics of Materials. 6th Ed., New York: McGraw-Hill Companies, 2012: 242
[21] Murakami Y, Endo M. Int J Fatigue, 1994; 16: 163
[22] Nakamura Y, Sakai T, Hirano H, Chandran K S R. Int J Fatigue, 2010; 32: 621
[1] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[2] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
[3] XU Wei,HUANG Minghao,WANG Jinliang,SHEN Chunguang,ZHANG Tianyu,WANG Chenchong. Review: Relations Between Metastable Austenite and Fatigue Behavior of Steels[J]. 金属学报, 2020, 56(4): 459-475.
[4] Zhefeng ZHANG, Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG. Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials[J]. 金属学报, 2018, 54(11): 1693-1704.
[5] Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. 金属学报, 2018, 54(10): 1359-1367.
[6] Qingsong ZHANG,Zhenyu ZHU,Jiewei GAO,Guangze DAI,Lei XU,Jian FENG. Effect of Anisotropy and Off-Axis Loading on Fatigue Property of 1050 Wheel Steel[J]. 金属学报, 2017, 53(3): 307-315.
[7] Fenjun LIU, Li FU, Haiyan CHEN. Microstructures and Mechanical Properties of Thin Plate Aluminium Alloy Joint Prepared by High Rotational Speed Friction Stir Welding[J]. 金属学报, 2017, 53(12): 1651-1658.
[8] Wei GU,Jingyuan LI,Yide WANG. EFFECT OF GRAIN SIZE AND TAYLOR FACTOR ON THE TRANSVERSE MECHANICAL PROPERTIES OF 7050 ALUMINIUM ALLOY EXTRUSION PROFILE AFTER OVER-AGING[J]. 金属学报, 2016, 52(1): 51-59.
[9] Linna BAI,Fuping LIU,Sui WANG,Feng JIANG,Jun SUN,Liangbin CHEN,WANG,Fengyuan. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Fe-C-Cu POWDER-FORGED CONNECTING ROD[J]. 金属学报, 2016, 52(1): 41-50.
[10] Zhisheng WANG, Xiang CHEN, Yanxiang LI, Huawei ZHANG, Yuan LIU. EFFECTS OF B ON HIGH TEMPERATURE MECHA-NICAL PROPERTIES AND THERMAL FATIGUE BEHAVIOR OF COPPER DIE-CASTING DIE STEEL[J]. 金属学报, 2015, 51(5): 519-526.
[11] Chao YANG,Jijie WANG,Zongyi MA,Dingrui NI,Mingjie FU,Xiaohua LI,Yuansong ZENG. FRICTION STIR WELDING AND LOW-TEMPERATURE SUPERPLASTICITY OF 7B04 Al SHEET[J]. 金属学报, 2015, 51(12): 1449-1456.
[12] YANG Jinxia, SUN Yuan, JIN Tao, SUN Xiaofeng, HU Zhuangqi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-BASED SUPERALLOY WITH REFINED GRAINS[J]. 金属学报, 2014, 50(7): 839-844.
[13] WANG Bo, WANG Xiaojiao, SONG Hui, YAN Jujie, QIU Tao, LIU Wenqing, LI Hui. STRENGTHENING EFFECTS OF MICROSTRUCTURE EVOLUTION DURING EARLY AGEING PROCESS IN Al-Mg-Si ALLOY[J]. 金属学报, 2014, 50(6): 685-690.
[14] AN Xianghai, WU Shiding, ZHANG Zhefeng. INFLUNECE OF STACKING FAULT ENERGY ON THE MICROSTRUCTURES, TENSILE AND FATIGUE PROPERTIES OF NANOSTRUCTURED Cu-Al ALLOYS[J]. 金属学报, 2014, 50(2): 191-201.
[15] SHENG Hai, DONG Chaofang, XIAO Kui, LI Xiaogang. LOCALIZED ELECTROCHEMICAL CHARACTERIZATION OF HIGH STRENGTH ALUMINIUM ALLOY AT THE CRACK TIP IN 3.5NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 414-419.
No Suggested Reading articles found!