Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 691-699    DOI: 10.3724/SP.J.1037.2013.00718
Current Issue | Archive | Adv Search |
DYNAMIC SOFTENING MECHANISM OF 2099 ALLOY DURING HOT DEFORMATION PROCESS
ZHANG Fei1,2, SHEN Jian1, YAN Xiaodong1, SUN Jianlin2, JIANG Na3, ZHOU Hua3
1 Beijing General Research Institute for Non-ferrous Metals, Beijing 100088
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
3 Southwest Aluminum (Group) Co., Ltd, Chongqing 401326
Cite this article: 

ZHANG Fei, SHEN Jian, YAN Xiaodong, SUN Jianlin, JIANG Na, ZHOU Hua. DYNAMIC SOFTENING MECHANISM OF 2099 ALLOY DURING HOT DEFORMATION PROCESS. Acta Metall Sin, 2014, 50(6): 691-699.

Download:  HTML  PDF(9891KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dynamic softening mechanism of 2099 alloy was investigated by isothermal compression tests, thermal activation parameters calculation and comparison, EBSD and TEM techniques. On the basis of Zener-Hollomon parameter (Z) and deformation temperature (T), combining thermal activation parameters and microstructures analysis, the softening mechanism of 2099 alloy during hot deformation has been proposed. Dislocation cross slip plays a dominant role under the conditions of lnZ≥35.5 and T≤380 ℃. While, deformation mechanisms such as cross slip, climb of dislocation and unzipping of attractive junction play a joint role when lnZ≤37.4 and T≥340 ℃. Particularly, dynamic recrystallization occurred in the range of lnZ≤35.1 and T≥420 ℃, cross slip, climb and unzipping of dislocation and dynamic recrystallization are the main softening mechanisms in this condition. Dynamic recrystallization nucleation mechanisms are constituted of grain boundaries bulging nucleation and subgrain rotated induced nucleation, and the latter becomes more significant with increasing temperature and decreasing strain rate.

Key words:  dynamic recovery      dynamic recrystallization      cross slip      climb     
Received:  11 November 2013     
ZTFLH:  TS912.3  
  TG111.7  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00718     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/691

Fig.1  OM images of 2099 alloy as-cast (a) and after homogenization treatment at 515 ℃ for 18 h and 525 ℃ for 16 h (b)
Fig.2  Curves of flow stress-strain rates of 2099 alloy under different temperatures (T—temperature, σ—stress, ε ˙ —stain rate)

T / ℃

Q / (K·mol-1)
V / (10-30 m3) and lnZ parameter
0.001 s-1 0.01 s-1 0.1 s-1 1 s-1 10 s-1
300 147.8 57.7 / 35.5 83.3 / 37.8 79.9 / 40.1 38.0 / 42.4 20.5 / 44.7
340 163.6 91.0 / 32.8 93.0 / 35.1 86.4 / 37.7 74.2 / 39.7 60.9 / 41.9
380 178.2 196.0 / 30.3 134.6 / 32.6 106.1 / 34.9 87.5 / 37.5 76.4 / 39.5
420 188.9 245.3 / 28.2 162.2 / 30.5 127.6 / 32.8 108.7 / 35.1 99.7 / 37.4
460 208.7 374.8 / 26.3 194.6 / 28.6 136.8 / 30.9 133.2 / 33.2 171.5 / 35.5
500 188.7 444.7 / 24.5 260.3 / 26.8 197.6 / 29.2 187.2 / 31.5 222.3 / 33.8
Table 1  Thermal activation parameters of 2099 alloy
Fig.3  Fit curves of apparent activation volume with lnZ of 2099 alloy
Fig.4  TEM images of 2099 alloy under lnZ=37.8 (300 ℃, 0.01 s-1) (a) and lnZ=35.5 (300 ℃, 0.001 s-1) (b)
Fig.5  TEM images of 2099 alloy under lnZ=37.4 (420 ℃, 10 s-1) (a), lnZ=32.8 (420 ℃, 0.1 s-1) (b), lnZ=30.9 (460 ℃, 0.1 s-1) (c) and lnZ=24.5 (500 ℃, 0.001 s-1) (d)
Fig.6  Fig.6 EBSD maps of 2099 alloy when lnZ=35.5 (300 ℃, 0.001 s-1)

(a) orientation image map

(b) grain boundary reconstruction map

Fig.7  Fig.7 EBSD maps of 2099 alloy when lnZ=35.1 (420 ℃, 1 s-1)

(a) orientation image map

(b) grain boundary reconstruction map

Fig.8  Orientation image (a, c) and grain boundary reconstruction (b, d) maps of 2099 alloy at 420 ℃ (a, b) and 500 ℃ (c, d) with strain rate of 0.1 s-1
Fig.9  TEM images of 2099 alloy at 420 ℃ (a) and 500 ℃ (b) with strain rate of 0.1 s-1
Fig.10  Orientation image (a, c) and grain boundary reconstruction (b, d) maps of 2099 alloy at 420 ℃ (a, b) and 500 ℃ (c, d) with strain rate of 0.001 s-1
Fig.11  TEM images of 2099 alloy at 420 ℃ (a), 460 ℃ (b) and 500 ℃ (c) with strain rate of 0.001 s-1
Fig.12  Statistical graph of misorientation distribution under different deformation conditions for 2099 alloy
[1] Jabra J, Romios M, Lai J, Lee E, Setiawan M, Lee E W, Witters J, Abourialy N, Ogren J R, Oppenheim T, Frazier W E, Es-Said O S. J Mater Eng Perform, 2006; 15: 601
[2] Ma Y, Zhou X, Thompson G E, Hashimoto T, Thomson P, Fowles M. Mater Chem Phys, 2011; 126: 46
[3] Romios M, Tiraschi R, Parrish C, Babel H W, Ogren J R, Es-Said O S. J Mater Eng Perform, 2005; 14: 641
[4] Ward N, Tran A, Abad A, Lee E W, Hahn M, Fordan E, Es-Said O S. J Mater Eng Perform, 2011; 20: 989
[5] Wei X Y, Zheng Z Q, She L J, Chen Q N, Li S C. Rare Met Mater Eng, 2010; 39: 1583
(魏修宇, 郑子樵, 佘玲娟, 陈秋妮, 李世晨. 稀有金属材料与工程, 2010; 39: 1583)
[6] Gourdet S, Montheillet F. Mater Sci Eng, 2000; A283: 274
[7] Tajally M, Huda Z, Masjuki H H. Met Sci Heat Treat, 2011; 53: 165
[8] Hu H E, Zhen L, Zhang B Y, Yang L, Chen J Z. Mater Charact, 2008; 59: 1185
[9] Faivre P, Doherty R D. J Mater Sci, 1979; 14: 897
[10] Wan J L, Sun X J, Gu J L, Chen N P. Acta Metall Sin, 1999; 35:1031
(万菊林, 孙新军, 顾家琳, 陈南平. 金属学报, 1999; 35: 1031)
[11] Xu X J, Wang B, Wu G C, Zhang F B, Song T, Luo Y, Cheng X N. Rare Met Mater Eng, 2011; 40(Suppl 2): 248
(许晓静, 王 彬, 吴桂潮, 张福豹, 宋 涛, 罗 勇, 程晓农. 稀有金属材料与工程, 2011; 40(增刊2): 248)
[12] Song T, Xu X J, Fan Z, Luo Y, Wang B, Wu G C, Zhang Z Q, Zhang Y K. Rare Met Mater Eng, 2012; 41(Suppl 2): 374
(宋 涛, 许晓静, 范 真, 罗 勇, 王 彬, 吴桂潮, 张振强, 张允康. 稀有金属材料与工程, 2012; 41(增刊2): 374)
[13] Zhu X H, Zheng Z Q, Zhong S. Chin J Nonferrous Met, 2010; 20: 1861
(朱小辉, 郑之樵, 钟 申. 中国有色金属学报, 2010; 20: 1861)
[14] Fragomeni J, Wheeler R, Jata K V. J Mater Eng Perform, 2005; 14: 18
[15] Song T, Xu X J, Fan Z, Zhang Z Q, Wang B, Luo Y. Chin J Rare Met, 2012; 36: 196
(宋 涛, 许晓静, 范 真, 张振强, 王 彬, 罗 勇. 稀有金属, 2012; 36: 196)
[16] Kertz J E, Gouma P I, Buchheit R G. Metall Mater Trans, 2001; 32A: 2561
[17] Csontos A A, Starke E A. Metall Mater Trans, 2000; 31A: 1965
[18] Odeshi A G, Adesola A O, Badmos A Y. Eng Fail Anal, 2013; 35: 302
[19] Zhang F, Shen J, Yan X D, Sun J L, Sun X L, Yang Y. Rare Met, 2014; 33: 28
[20] Shen J. Chin J Nonferrous Met, 2001; 11: 593
(沈 健. 中国有色金属学报, 2001; 11: 593)
[21] Rao K P, Prasad Y V R K. J Mech Work Technol, 1986; 13: 83
[22] Li W, Li H, Wang Z X, Zheng Z Q. Mater Sci Eng, 2011; A528: 4101
[23] Li J C M. J Appl Phys, 1962; 33: 2965
[24] Samantaray D, Mandal S, Bhaduri A K. Mater Des, 2010; 31: 982
[25] Song W X. Metallography. 2nd Ed., Beijing: Metallurgical Industry Press, 2010: 189
(宋维锡. 金属学. 第二版, 北京: 冶金工业出版社, 2010: 189)
[26] Shen J. PhD Dissertation, Central South University of Technology, Changsha, 1996
(沈 健. 中南工业大学博士学位论文, 长沙, 1996)
[27] Wang Y, Shao W Z, Zhen L, Zhang X M. Mater Sci Eng, 2008; A486: 321
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[6] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[7] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[8] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[9] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[10] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[11] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[12] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[13] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[14] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[15] Tao WANG, Zhipeng WAN, Yu SUN, Zhao LI, Yong ZHANG, Lianxi HU. Dynamic Softening Behavior and Microstructure Evolution of Nickel Base Superalloy[J]. 金属学报, 2018, 54(1): 83-92.
No Suggested Reading articles found!