Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1413-1422    DOI: 10.11900/0412.1961.2016.00102
Orginal Article Current Issue | Archive | Adv Search |
EFFECT OF HYBRID SURFACE NANOCRYSTALLI-ZATION ON THE ELECTROCHEMICAL CORROSION BEHAVIOR IN 2A14 ALUMINUM ALLOY
Jianhai YANG1,Yuxiang ZHANG1,Liling GE2(),Jiazhao CHEN1,Xin ZHANG1
1 Rocket Force University of Engineering, Xi'an 710025, China
2 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China;
Download:  HTML  PDF(1752KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, the surface nanocrystallization (SNC) technology has received extensive attentions in the field of metal material. The shot peening and surface mechanical rolling processing technology can form the gradient nanostructured (GNS) layer on the surface of metal. The material surface roughness is large generally. Therefore, the problem how to form the thick, smooth, flawless GNS layer is need to solve urgently. By means of the hybrid surface nanocrystallization (HSNC) method of both supersonic fine particles bombarding (SFPB) and surface mechanical rolling treatment (SMRT), a gradient nanostructured surface layer was formed on 2A14 aluminum alloy plate. The electrochemical corrosion behavior of the HSNC sample at the air of room temperature and low temperature liquid nitrogen was compared with that of the original sample in aqueous solution of 3.5%NaCl. The results showed that grain size increases from about 30 nm at the surface layer gradually to coarse grain size of the matrix when the sample was processed by HSNC. The total thickness of the plastic deformation layer is about 130 μm. The surface roughness Ra is about 0.6 μm with the surface microcrack disappeared. Compared to the original sample, the pitting corrosion resistance of the SFPB samples was not improved and the pitting corrosion resistance of the HSNC samples was improved. The self-corrosion potential and pitting corrosion potential increase respectively from -1.01228 and -0.29666 V in the original sample to -0.67445 and 0.026760 V at the air room temperature of the HSNC sample. The pitting corrosion resistance of the HSNC sample at the air of room temperature was the biggest. The analysis showed that the surface GNS grain, significant increase of the nanocrystal boundaries, the introduction of compressive residual stress and the decrease of surface roughness were beneficial to improve the pitting corrosion resistance.

Key words:  aluminum      alloy,      hybrid      surface      nanocrystallization,      gradient      nanostructure,      pitting      corrosion      resistance     
Received:  23 March 2016     
Fund: Supported by National Natural Science Foundation of China (No.51275517) and Special Project of Xi'an University of Technology (No.2014TS002)

Cite this article: 

Jianhai YANG,Yuxiang ZHANG,Liling GE,Jiazhao CHEN,Xin ZHANG. EFFECT OF HYBRID SURFACE NANOCRYSTALLI-ZATION ON THE ELECTROCHEMICAL CORROSION BEHAVIOR IN 2A14 ALUMINUM ALLOY. Acta Metall Sin, 2016, 52(11): 1413-1422.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00102     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1413

Fig.1  Schematic of surface mechanical rolling treatment (SMRT) equipment[13]
Fig.3  Cross-sectional OM image of the 2A14 aluminum alloy
Fig.4  Cross-sectional SEM images of 2A14 aluminum alloy after SNC

(a) SFPB (b) SFPB+SMRT, 20 ℃

(c) SFPB+SMRT, -196 ℃

Fig.5  Variation of the microhardness with the depth of 2A14 aluminum alloy before and after SNC
Fig.6  Cross-sectional bright field (a, c, e, g) and dark field (b, d, f, h) TEM images of 2A14 aluminum alloy about 100 μm (a~d) and 50 μm (e~h) from surface after SFPB
Fig.7  Cross-sectional bright field (a, c, e) and dark field (b, d, f) TEM images of 2A14 aluminum alloy in the top surface layer after SNC (Insets in Figs.7a, c and e show SAED patters)

(a, b) SFPB (c, d) SFPB+SMRT, 20 ℃ (e, f) SFPB+SMRT, -196 ℃

Fig.8  Potentiodynamic polarization curves of 2A14 aluminum alloy before and after SNC in 3.5%NaCl aqueous solution
Sample Self-corrosion current density / (Acm-2) Self-corrosion
potential / V
Pitting corrosion potential / V
Original 9.51×10-7 -1.01228 -0.29666
SFPB 9.65×10-7 -1.07179 -0.11525
SFPB+SMRT, 20 ℃ 5.71×10-8 -0.67445 0.02676
SFPB+SMRT, -196 ℃ 3.83×10-7 -0.70680 0.00445
Table 2  Electrochemical parameters of 2A14 aluminum alloy before and after SNC in 3.5%NaCl aqueous solution
Fig.9  Low (a, c, e, g) and high (b, d, f, h) magnified SEM images of pitting morphologies of 2A14 aluminum alloy before (a, b) and after (c~h) SNC in 3.5%NaCl aqueous solution

(a, b) original (c, d) SFPB (e, f) SFPB+SMRT, 20 ℃ (g, h) SFPB+SMRT, -196 ℃

Fig.10  EDS analyses of area 1 of the original sample in Fig.9b (a), area 2 of the sample after SFPB in Fig.9d (b), area 3 of the sample after SFPB+SMRT, 20 ℃ in Fig.9f (c) and area 4 of the sample after SFPB+SMRT, -196 ℃ in Fig.9h (d)
Sample O Al Cl Cu
Original 67.61 21.44 8.40 2.55
SFPB 62.62 26.60 7.17 3.61
SFPB+SMRT, 20 ℃ 66.57 30.03 2.54 0.86
SFPB+SMRT, -196 ℃ 65.26 28.97 4.64 1.13
Table 3  Element contents in EDS analyses of Fig.10
[1] Lu K, Lu J.J Mater Sci Technol, 1999; 15: 193
[2] Lu L, Sui M L, Lu K.Science, 2000; 287: 1463
[3] Lu K, Lu J.Mater Sci Eng, 2004; A375: 38
[4] Chen T, John H, Xu J, Lu Q, Hawk J, Liu X.Corros Sci, 2013; 77: 230
[5] Hajizadeh K, Maleki G H, Arabi A, Behnamian Y, Aghaie E, Farrokhi A, Hosseini M G, Fathi M H.Surf Interface Anal, 2015; 47: 978
[6] Huang R, Han Y.Mater Sci Eng, 2013; C33: 2353
[7] Jelliti S, Richard C, Retraint D, Roland T, Chemkhi M, Demangel C.Surf Coat Technol, 2013; 224: 82
[8] Ye W, Li Y, Wang F.Electrochim Acta, 2006; 51: 4426
[9] Raja K S, Namjoshi S A, Misra M.Mater Lett, 2005; 59: 570
[10] Ahmed A A, Mhaede M, Wollmann M, Wagner L.Appl Surf Sci, 2016; 363: 50
[11] Ma S N, Wang X, Wang X M.China Surf Eng, 2010; 24(5): 22
[11] (马世宁, 王翔, 王晓明. 中国表面工程, 2010; 24(5): 22)
[12] Balusamy T, Sankara Narayanan T S N, Ravichandran K, Park I S, Lee M H.Corros Sci, 2013; 74: 332
[13] Bai T.PhD Dissertation, East China University of Science and Technology, Shanghai, 2013(白涛. 华东理工大学博士学位论文, 上海, 2013)
[14] Klug H P, Alexander L E.X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley & Sons Wiley, 1974: 491
[15] Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K.Acta Mater, 2002; 50: 4603
[16] Cheng M, Zhang D, Chen H, Qin W, Li J.Int J Adv Technol, 2016; 83: 123
[17] De A K, Murdock D C, Mataya M C, Speer J G, Matlock D K.Scr Mater, 2004; 50: 1445
[18] Kumar S A, Raman S G S, Narayanan T S N S.Surf Coat Technol, 2012; 206: 4425
[19] Liu L, Li Y, Wang F H.Acta Metall Sin, 2014; 50: 212
[19] (刘莉, 李瑛, 王福会. 金属学报, 2014; 50: 212)
[20] Tong W P, Tao N R, Wang Z B, Lu J, Lu K.Science, 2003; 289: 686
[21] Ge L L, Lu Z X, Jing X T, Liu Z L, Tian N.Acta Metall Sin, 2009; 45: 566
[21] (葛利玲, 卢正欣, 井晓天, 刘忠良, 田娜. 金属学报, 2009; 45: 566)
[22] Wang A X, Liu G, Zhou L, Wang K, Yang X H, Li Y.Acta Metall Sin, 2005; 41: 577
[22] (王爱香, 刘刚, 周蕾, 王科, 杨晓华, 李瑛. 金属学报, 2005; 41: 577)
[23] Cao C N.Principles of Electrochemistry of Corrosion. 3rd Ed., Beijing: Chemical Industry Press, 2008: 216
[23] (曹楚南. 腐蚀电化学原理. 第三版, 北京: 化学工业出版社, 2008: 216)
[24] Tong W P, Han Z, Wang L M, Lu J, Lu K.Surf Coat Technol, 2008; 202: 4957
[25] Sun Y, Bailey R.Surf Coat Technol, 2014; 253: 284
[26] Huang H W, Wang Z B, Liu L, Yong X P, Lu K.Acta Metall Sin, 2015; 51: 513
[26] (黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 金属学报, 2015; 51: 513)
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[3] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[4] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[5] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[6] WEI Jie, WEI Yinghua, LI Jing, ZHAO Hongtao, LV Chenxi, DONG Junhua, KE Wei, HE Xiaoyan. Corrosion Behavior of Damaged Epoxy Coated Steel Bars Under the Coupling Effect of Chloride Ion and Carbonization[J]. 金属学报, 2020, 56(6): 885-897.
[7] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[8] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[9] GAO Xiang, ZHANG Guikai, XIANG Xin, LUO Lizhu, WANG Xiaolin. Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study[J]. 金属学报, 2020, 56(6): 919-928.
[10] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[11] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[12] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[13] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[14] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[15] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
No Suggested Reading articles found!