Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1413-1422    DOI: 10.11900/0412.1961.2016.00102
Orginal Article Current Issue | Archive | Adv Search |
EFFECT OF HYBRID SURFACE NANOCRYSTALLI-ZATION ON THE ELECTROCHEMICAL CORROSION BEHAVIOR IN 2A14 ALUMINUM ALLOY
Jianhai YANG1,Yuxiang ZHANG1,Liling GE2(),Jiazhao CHEN1,Xin ZHANG1
1 Rocket Force University of Engineering, Xi'an 710025, China
2 School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China;
Cite this article: 

Jianhai YANG,Yuxiang ZHANG,Liling GE,Jiazhao CHEN,Xin ZHANG. EFFECT OF HYBRID SURFACE NANOCRYSTALLI-ZATION ON THE ELECTROCHEMICAL CORROSION BEHAVIOR IN 2A14 ALUMINUM ALLOY. Acta Metall Sin, 2016, 52(11): 1413-1422.

Download:  HTML  PDF(1752KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, the surface nanocrystallization (SNC) technology has received extensive attentions in the field of metal material. The shot peening and surface mechanical rolling processing technology can form the gradient nanostructured (GNS) layer on the surface of metal. The material surface roughness is large generally. Therefore, the problem how to form the thick, smooth, flawless GNS layer is need to solve urgently. By means of the hybrid surface nanocrystallization (HSNC) method of both supersonic fine particles bombarding (SFPB) and surface mechanical rolling treatment (SMRT), a gradient nanostructured surface layer was formed on 2A14 aluminum alloy plate. The electrochemical corrosion behavior of the HSNC sample at the air of room temperature and low temperature liquid nitrogen was compared with that of the original sample in aqueous solution of 3.5%NaCl. The results showed that grain size increases from about 30 nm at the surface layer gradually to coarse grain size of the matrix when the sample was processed by HSNC. The total thickness of the plastic deformation layer is about 130 μm. The surface roughness Ra is about 0.6 μm with the surface microcrack disappeared. Compared to the original sample, the pitting corrosion resistance of the SFPB samples was not improved and the pitting corrosion resistance of the HSNC samples was improved. The self-corrosion potential and pitting corrosion potential increase respectively from -1.01228 and -0.29666 V in the original sample to -0.67445 and 0.026760 V at the air room temperature of the HSNC sample. The pitting corrosion resistance of the HSNC sample at the air of room temperature was the biggest. The analysis showed that the surface GNS grain, significant increase of the nanocrystal boundaries, the introduction of compressive residual stress and the decrease of surface roughness were beneficial to improve the pitting corrosion resistance.

Key words:  aluminum      alloy,      hybrid      surface      nanocrystallization,      gradient      nanostructure,      pitting      corrosion      resistance     
Received:  23 March 2016     
Fund: Supported by National Natural Science Foundation of China (No.51275517) and Special Project of Xi'an University of Technology (No.2014TS002)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00102     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1413

Fig.1  Schematic of surface mechanical rolling treatment (SMRT) equipment[13]
Fig.3  Cross-sectional OM image of the 2A14 aluminum alloy
Fig.4  Cross-sectional SEM images of 2A14 aluminum alloy after SNC

(a) SFPB (b) SFPB+SMRT, 20 ℃

(c) SFPB+SMRT, -196 ℃

Fig.5  Variation of the microhardness with the depth of 2A14 aluminum alloy before and after SNC
Fig.6  Cross-sectional bright field (a, c, e, g) and dark field (b, d, f, h) TEM images of 2A14 aluminum alloy about 100 μm (a~d) and 50 μm (e~h) from surface after SFPB
Fig.7  Cross-sectional bright field (a, c, e) and dark field (b, d, f) TEM images of 2A14 aluminum alloy in the top surface layer after SNC (Insets in Figs.7a, c and e show SAED patters)

(a, b) SFPB (c, d) SFPB+SMRT, 20 ℃ (e, f) SFPB+SMRT, -196 ℃

Fig.8  Potentiodynamic polarization curves of 2A14 aluminum alloy before and after SNC in 3.5%NaCl aqueous solution
Sample Self-corrosion current density / (Acm-2) Self-corrosion
potential / V
Pitting corrosion potential / V
Original 9.51×10-7 -1.01228 -0.29666
SFPB 9.65×10-7 -1.07179 -0.11525
SFPB+SMRT, 20 ℃ 5.71×10-8 -0.67445 0.02676
SFPB+SMRT, -196 ℃ 3.83×10-7 -0.70680 0.00445
Table 2  Electrochemical parameters of 2A14 aluminum alloy before and after SNC in 3.5%NaCl aqueous solution
Fig.9  Low (a, c, e, g) and high (b, d, f, h) magnified SEM images of pitting morphologies of 2A14 aluminum alloy before (a, b) and after (c~h) SNC in 3.5%NaCl aqueous solution

(a, b) original (c, d) SFPB (e, f) SFPB+SMRT, 20 ℃ (g, h) SFPB+SMRT, -196 ℃

Fig.10  EDS analyses of area 1 of the original sample in Fig.9b (a), area 2 of the sample after SFPB in Fig.9d (b), area 3 of the sample after SFPB+SMRT, 20 ℃ in Fig.9f (c) and area 4 of the sample after SFPB+SMRT, -196 ℃ in Fig.9h (d)
Sample O Al Cl Cu
Original 67.61 21.44 8.40 2.55
SFPB 62.62 26.60 7.17 3.61
SFPB+SMRT, 20 ℃ 66.57 30.03 2.54 0.86
SFPB+SMRT, -196 ℃ 65.26 28.97 4.64 1.13
Table 3  Element contents in EDS analyses of Fig.10
[1] Lu K, Lu J.J Mater Sci Technol, 1999; 15: 193
[2] Lu L, Sui M L, Lu K.Science, 2000; 287: 1463
[3] Lu K, Lu J.Mater Sci Eng, 2004; A375: 38
[4] Chen T, John H, Xu J, Lu Q, Hawk J, Liu X.Corros Sci, 2013; 77: 230
[5] Hajizadeh K, Maleki G H, Arabi A, Behnamian Y, Aghaie E, Farrokhi A, Hosseini M G, Fathi M H.Surf Interface Anal, 2015; 47: 978
[6] Huang R, Han Y.Mater Sci Eng, 2013; C33: 2353
[7] Jelliti S, Richard C, Retraint D, Roland T, Chemkhi M, Demangel C.Surf Coat Technol, 2013; 224: 82
[8] Ye W, Li Y, Wang F.Electrochim Acta, 2006; 51: 4426
[9] Raja K S, Namjoshi S A, Misra M.Mater Lett, 2005; 59: 570
[10] Ahmed A A, Mhaede M, Wollmann M, Wagner L.Appl Surf Sci, 2016; 363: 50
[11] Ma S N, Wang X, Wang X M.China Surf Eng, 2010; 24(5): 22
[11] (马世宁, 王翔, 王晓明. 中国表面工程, 2010; 24(5): 22)
[12] Balusamy T, Sankara Narayanan T S N, Ravichandran K, Park I S, Lee M H.Corros Sci, 2013; 74: 332
[13] Bai T.PhD Dissertation, East China University of Science and Technology, Shanghai, 2013(白涛. 华东理工大学博士学位论文, 上海, 2013)
[14] Klug H P, Alexander L E.X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley & Sons Wiley, 1974: 491
[15] Tao N R, Wang Z B, Tong W P, Sui M L, Lu J, Lu K.Acta Mater, 2002; 50: 4603
[16] Cheng M, Zhang D, Chen H, Qin W, Li J.Int J Adv Technol, 2016; 83: 123
[17] De A K, Murdock D C, Mataya M C, Speer J G, Matlock D K.Scr Mater, 2004; 50: 1445
[18] Kumar S A, Raman S G S, Narayanan T S N S.Surf Coat Technol, 2012; 206: 4425
[19] Liu L, Li Y, Wang F H.Acta Metall Sin, 2014; 50: 212
[19] (刘莉, 李瑛, 王福会. 金属学报, 2014; 50: 212)
[20] Tong W P, Tao N R, Wang Z B, Lu J, Lu K.Science, 2003; 289: 686
[21] Ge L L, Lu Z X, Jing X T, Liu Z L, Tian N.Acta Metall Sin, 2009; 45: 566
[21] (葛利玲, 卢正欣, 井晓天, 刘忠良, 田娜. 金属学报, 2009; 45: 566)
[22] Wang A X, Liu G, Zhou L, Wang K, Yang X H, Li Y.Acta Metall Sin, 2005; 41: 577
[22] (王爱香, 刘刚, 周蕾, 王科, 杨晓华, 李瑛. 金属学报, 2005; 41: 577)
[23] Cao C N.Principles of Electrochemistry of Corrosion. 3rd Ed., Beijing: Chemical Industry Press, 2008: 216
[23] (曹楚南. 腐蚀电化学原理. 第三版, 北京: 化学工业出版社, 2008: 216)
[24] Tong W P, Han Z, Wang L M, Lu J, Lu K.Surf Coat Technol, 2008; 202: 4957
[25] Sun Y, Bailey R.Surf Coat Technol, 2014; 253: 284
[26] Huang H W, Wang Z B, Liu L, Yong X P, Lu K.Acta Metall Sin, 2015; 51: 513
[26] (黄海威, 王镇波, 刘莉, 雍兴平, 卢柯. 金属学报, 2015; 51: 513)
[1] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[6] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[7] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[9] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[10] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[11] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[12] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[13] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[14] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[15] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
No Suggested Reading articles found!