|
|
INVESTIGATION OF MECHANICAL BEHAVIOR OF INTERFACES IN NANOSTRUCTURED METALS |
WEI Yujie( ) |
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanicas, Chinese Academy of Sciences,Beijing 100190 |
|
Cite this article:
WEI Yujie. INVESTIGATION OF MECHANICAL BEHAVIOR OF INTERFACES IN NANOSTRUCTURED METALS. Acta Metall Sin, 2014, 50(2): 183-190.
|
Abstract When grain sizes of crystals are down to nano-scale, the so-called nanocrystalline materials exhibit distinct physical properties in contrast to their conventional counterparts. The strength and plastic deformation mechanisms were among the most broadly investigated properties from mechanical society. Since deformation and pre-mature failure in interfaces (including grain boundaries, twin boundaries, and interfaces between different media) could be the origin of low ductility in nanocrystalline materials, the effort to evade the strength-ductility trade-off dilemma in nanocrystalline materials, by tuning their interfacial structures/properties, is usually called as interfacial engineering. Twin boundaries stand out among all possible boundary structures for their capability to enhance strength and retain ductility of crystalline metals. In this paper, current understanding about the mechanical behavior associated with interfaces in nanostructured metals is reviewed, with a focus on the strengthening mechanisms played by twin/grain boundaries and current physical models to shed light on the size-effect induced by grain sizes and twin thicknesses.
|
Received: 19 December 2013
|
|
Fund: Supported by National Basic Research Program of China (No.2012CB937500), National Natural Science Foundation of China (Nos.11021262 and 11272327) and Program of “One Hundred Talented People” of Chinese Academy of Sciences |
[1] |
Feynman R. Caltech Eng Sci, 1960; 23: 22
|
[2] |
Taniguchi N. Proc Int Conf Prod Eng Tokyo, Part II, Tokyo: Japan Society of Precision Engineering, 1974: 18
|
[3] |
Gleiter H. In: Hansen N, Leffers T, Lilholt H, eds., Proc 2nd Riso International Symposium on Metallurgy and Materials Science, Roskilde: Riso National Laboratory, 1981: 15
|
[4] |
Gleiter H. Progress Mater Sci, 1989; 33: 223
|
[5] |
Hall E O. Proc Phys Soc, 1951; 64B: 747
|
[6] |
Petch N J. J Iron Steel Inst, 1953; 174: 25
|
[7] |
Peirls R. Proc Phys Soc, 1940; 52: 34
|
[8] |
Cottrell A H. Trans Metall Soc AIME, 1958; 212: 192
|
[9] |
Li J C M. Trans Metall Soc AIME, 1963; 227: 239
|
[10] |
Coble R L. J Appl Phys, 1963; 34: 1679
|
[11] |
Koch C C. Structural Nanocrystalline Materials: Fundamentals and Applications. Cambridge: Cambridge University Press, 2007
|
[12] |
Tjong S C. Nanocrystalline Materials: Their Synthesis-Structure-Property Relationships and Applications. London: Newnes, 2013
|
[13] |
Kumar K S, Van Swygenhoven H, Suresh S. Acta Mater, 2003; 51: 5743
|
[14] |
Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
|
[15] |
Zhu T T, Bushby A J, Dunstan D J. Mater Technol, 2008; 23: 193
|
[16] |
Dao M, Lu L, Asaro R J, De Hosson J T M, Ma E. Acta Mater, 2007; 55: 4041
|
[17] |
Wolf D, Yamakov V, Phillpot S R, Mukherjee A K, Gleiter H. Acta Mater, 2005; 53: 1
|
[18] |
Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H. Nat Mater, 2004; 3: 43
|
[19] |
Zhu T, Li J. Prog Mater Sci, 2010; 55: 710
|
[20] |
Lu K, Lu L, Suresh S. Science, 2009; 324: 349
|
[21] |
Zhu Y T, Liao X Z, Wu X L. Prog Mater Sci, 2012; 57: 1
|
[22] |
Wei Y J. PhD Dissertation, Massachusetts Institute of Technology, 2006
|
[23] |
Asaro R J, Krysl P, Kad B. Philos Mag Lett, 2003; 83: 733
|
[24] |
Zhu B, Asaro R J, Krysl P, Bailey R. Acta Mater, 2005; 53: 4825
|
[25] |
Asaro R J, Suresh S. Acta Mater, 2005; 53: 3369
|
[26] |
Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
|
[27] |
Lu L, Sui M L, Lu K. Science, 2000; 287: 1463
|
[28] |
Wang H, Yang W. J Mech Phys Solids, 2004; 52: 1151
|
[29] |
Yang W, Wang H. J Mech Phys Solids, 2004; 52: 875
|
[30] |
Wei Y J, Gao H J. Mater Sci Eng, 2008; A478: 16
|
[31] |
Wei Y J, Anand L. J Mech Phys Solids, 2004; 52: 2587
|
[32] |
Wei Y J, Su C, Anand L. Acta Mater, 2006; 54: 3177
|
[33] |
Wei Y J, Bower A F, Gao H J. J Mech Phys Solids, 2008; 56: 1460
|
[34] |
Wei Y J, Bower A F, Gao H J. Acta Mater, 2008; 56: 1741
|
[35] |
Schiotz J, Tolla F D D, Jacobsen K W. Nature, 1998; 39: 561
|
[36] |
Li X Y, WeiY J, Yang W, Gao H J. Proc Nat Acad Sci USA, 2009; 106: 16108
|
[37] |
Ma E. JOM, 2006; 58: 49
|
[38] |
Hull D, Bacon D J. Introduction to Dislocations V. Oxford: Butterworth-Heinemann, 2011: 171
|
[39] |
Wu J T, Wei Y J. J Mech Phys Solids, 2013; 61: 1421
|
[40] |
Kumar K S, Suresh S, Chisolm M F, Horton J A, Wang P. Acta Mater, 2003; 51: 387
|
[41] |
Yip S. Nat Mater, 2004; 3: 11
|
[42] |
Zhu Y T, Liao X Z. Nat Mater, 2004; 3: 351
|
[43] |
Liddicoat P V, Liao X Z, Zhao Y H, Zhu Y T, Murashkin M Y, Lavernia E J, Valiev R Z, Ringer S P. Nat Comm, 2010; 1: No.63
|
[44] |
Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304: 422
|
[45] |
Lu L, Chen X, Huang X, Lu K. Science, 2009; 323: 607
|
[46] |
Li X Y, WeiY J, Lu K, Lu L, Gao H J. Nature, 2010; 464: 877
|
[47] |
Zhou H F, Qu S X, Yang W. Model Simul Mater Sci Eng, 2010; 18: 065002
|
[48] |
Wei Y J. Phys Rev, 2011; 84B: 014107
|
[49] |
Idrissi H, Wang B J, Colla M S, Raskin J P, Schryvers D, Pardoen T. Adv Mater, 2011; 23 : 2119
|
[50] |
Jang D, Li X, Gao H, Greer J R. Nat Nanotechnol, 2012; 7: 594
|
[51] |
Greer J R. Nat Mater, 2013; 12: 689
|
[52] |
Bufford D, Wang H, Zhang X. Acta Mater, 2011; 59: 93
|
[53] |
Kulkarni Y, Asaro R J. Acta Mater, 2009; 57: 4835
|
[54] |
Zhang J J, Wei Y J, Sun T, Hartmaier A, Yan Y, Li X D. Phys Rev, 2012; 85B: 054109
|
[55] |
Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y. Nature, 2013; 493: 385
|
[56] |
Wang J W, Sansoz F, Huang J Y, Liu Y, Sun S H, Zhang Z, Mao S X. Nat Commun, 2013; 4: No.1742
|
[57] |
Zhu L, Kou H, Lu J. Appl Phys Lett, 2012; 101: 081906
|
[58] |
Wang H T, Tao N R, Lu K. Acta Mater, 2012; 60: 4027
|
[59] |
Li Y Q, Zhu L C, Liu Y, Wei Y J, Wu Y X, Tang D, Mi Z L. J Mech Phys Solids, 2013; 61: 2588
|
[60] |
Lu L, Lu K. Acta Metall Sin, 2010; 46: 1422
|
|
(卢 磊, 卢 柯. 金属学报, 2010; 46: 1422)
|
[61] |
Zhu T, Gao H J. Scr Mater, 2012; 66: 843
|
[62] |
Jin Z H. Scr Mater, 2006; 54: 1163
|
[63] |
Jin Z H. Acta Mater, 2008; 56: 1126
|
[64] |
Ni S, Wang Y, Liao X, Figueiredo R, Li H, Ringer S, Langdon T, Zhu Y. Acta Mater, 2012; 60: 3181
|
[65] |
You Z S, Lu L, Lu K. Acta Mater, 2011; 59: 6927
|
[66] |
Matthews J W, Blakeslee A E. J Cryst Growth, 1975; 29: 273
|
[67] |
Freund L B. J Appl Mech, 1987; 54: 553
|
[68] |
Nix W. Metall Mater Trans, 1989; 20A: 2217
|
[69] |
Hosford W F. Mechanical Behavior of Materials. Cambridge:Cambridge University Press, 2005: 164
|
[70] |
Wei Y J. Mater Sci Eng, 2011; A528: 1558
|
[71] |
Wei Y J. Phys Rev, 2011; 83B: 132104
|
[72] |
Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
|
|
Liu X C, Zhang H W, Lu K. Science, 2013; 342: 337
|
[73] |
Lu X L, Lu Q H, Li Y, Lu L. Scientific Reports, 2013; 3: No.3319
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|