|
|
EFFECT OF Ce-Cu CODOPING ON OPTOELECTRONIC PROPERTY OF SnO2 FILM |
SHAN Linting, BA Dechun( ), CAO Qing, HOU Xueyan, LI Jianchang |
Vacuum and Fluid Engineering Research Center, Northeastern University, Shenyang 110819 |
|
Cite this article:
SHAN Linting, BA Dechun, CAO Qing, HOU Xueyan, LI Jianchang. EFFECT OF Ce-Cu CODOPING ON OPTOELECTRONIC PROPERTY OF SnO2 FILM. Acta Metall Sin, 2014, 50(1): 95-102.
|
Abstract Tin dioxide (SnO2) is a wide band gap semiconductor. SnO2 has recently received a large interest because of its multiple technological applications, including solar cells, optoelectronic devices, flat panel displays, gas sensors, architectural windows and catalysts, owing to its good optical and electrical properties and excellent chemical and thermal stability. Compared to traditional materials which based on sulfur compound, rare earth elements doped oxides possess obvious advantages, such as good chemical stability, high transparency in the range of visible light, and nontoxic. In this work, the Ce-Cu codoping of SnO2 thin films were prepared by sol-gel method. The influence of Ce-Cu codoping on the microstructural and optoelectrical properties has been investigated. Both Cu and Ce dopants are incorporated at substitutional sites (, ), acting as the acceptors. With increasing the Ce content, the film grain size and optical band gap decrease, while the resistivity decreases at first and then increases due to the change of spatial trap distribution. The ultraviolet peak of the films can be attributed to the oxygen vacancies, while the blue emission at 470 nm belongs to the electron transition between 5d excited state and 4f state of Ce3+ ion. Besides, the intensity of the visible emission peak is influenced by the Ce content. The band structure, density of states of SnO2, intrinsic and doped separately with Cu and Ce were investigated by first-principles full potential linearized augmented plane wave method. The Ce-Cu co-dopants make the conduction band shift down and induce a fully occupied impurity band above the valance band, and 4f orbital of Ce inserts into the conduction band, which leads the shift of the bottom of the conduction band to lower energy zone and narrowing of band gap, thus the band gap is decreased and the conductivity is improved.
|
Received: 23 April 2013
|
|
Fund: Supported by Fundamental Research Funds for the Central Universities (No.N110403001) |
[1] |
Coutts T J, Young D L, Li X, Mulligan W P, Wu X.J Vac Sci Technol, 2000; 18: 2646
|
[2] |
Svance A, Antoncik J E.Phys Chem Solids, 1987; 48: 171
|
[3] |
Harrison P G, Willett M J.Nature, 1988; 332: 337
|
[4] |
Dolbec R, Khakani M A, Serventi A M, Trudeau M, Saint-Jacques R G. Thin Solid Films, 2001; 419: 230
|
[5] |
Ellmer K.Nat Photonics, 2012; 282: 809
|
[6] |
Ji Z G, He Z J, Song Y L.Acta Phys Sin, 2003; 53: 4330
|
|
(季振国, 何振杰, 宋永梁. 物理学报, 2003; 53: 4330)
|
[7] |
Huang J Y, Fan G H, Zheng S W, Niu Q L, Li S T, Cao J X, Su J, Zhang Y.Chin Phys, 2010; 19B: 047205
|
[8] |
Rockenberger J, Zum Felde U, Tischer M, Troger L, Haase M, Weller H. J Chem Phys, 2000; 112: 4296
|
[9] |
Jung Y S, Choi Y W, Lee D W.Thin Solid Films, 2003; 440: 278
|
[10] |
Coey M D, Douvalis A P, Fitzgerald C B, Venkatesan M.Appl Phys Lett, 2004; 84: 1332
|
[11] |
Ghimbeu C M, Lumbreras M, Schoonman J, Siadat M.Sensors, 2009; 9: 9122
|
[12] |
Li Y F, Deng R, Tian Y F, Yao B, Wu T.Appl Phys Lett, 2012; 100: 172402
|
[13] |
Chang S S, Jo M S.Ceram Int, 2007; 33: 511
|
[14] |
Liu Y K, Tian Y, Feng Y J, Wu X W, Han X G. JInorg Mater, 2008; 23: 891
|
|
(刘延坤, 田 言, 冯玉杰, 武晓威, 韩霞光. 无机材料学报, 2008; 23: 891)
|
[15] |
Chen S, Zhao X R, Xie H Y, Liu J M, Duan L B, Ba X J, Zhao J L.Appl Surf Sci, 2012; 258: 3255
|
[16] |
Gu F, Wang S F, Lv M K, Zhou G J, Xu D, Yuan D R. J Phys Chem, 2012; 108B: 8119
|
[17] |
Yamamoto T, Katayama Y H. Physica, 2001; 302B: 155
|
[18] |
Han X B. Master Thesis, Northeastern University, Shenyang, 2010
|
|
(韩晓波. 东北大学硕士学位论文, 沈阳, 2010)
|
[19] |
Ghimbeu C M, Van Landschoot R C, Schoonman J, Lumbreras M, Antoncik J E.J Eur Ceram Soc, 2007; 27: 207
|
[20] |
Lun N, Hu C X, Wu Y S.J Shandong Univ, 2003; 33: 605
|
|
(伦 宁, 胡春霞, 吴佑实. 山东大学学报, 2003; 33: 605)
|
[21] |
Oadri S B, Yang J P, Skelton E F, Ratna B R.Appl Phys Lett, 1997; 70: 1020
|
[22] |
Williamson G K, Hall W H.Acta Metall, 1953; 1: 22
|
[23] |
Kissine V V, Voroshilov S A, Sysoev V V.Thin Solid Films, 1999; 384: 304
|
[24] |
Liu S X,Liu H. The Basis and Application of Photocatalysis and Photoelectrocatalysis. Beijing: Chemical Industry Press, 2006: 21
|
|
(刘守新,刘 鸿.光催化及光电催化基础与应用. 北京: 化学工业出版社, 2006: 21)
|
[25] |
Yan J K, Gan G Y, Chen H F, Zhang X W, Sun J L.Semiconductor Technol, 2007; 32: 109
|
|
(严继康, 甘国友, 陈海芳, 张小文, 孙加林. 半导体技术, 2007; 32: 109)
|
[26] |
Terrier C, Chatelon J P, Roger J A.Thin Solid Films, 2007; 295: 95
|
[27] |
Zhang B Y, Yao B, Li Y F, Zhang Z Z, Li B H, Shan D X, Shen D Z.Appl Phys Lett, 2007; 97: 222101
|
[28] |
Kim T W, Lee D U, Yoon Y S.J Appl Phys, 2000; 88: 3759
|
[29] |
Peng Z J, Yang Y Y, Wang C B, Fu Z Q.Acta Metall Sin, 2008; 10: 1265
|
|
(彭志坚, 杨义勇, 王成彪, 付志强. 金属学报, 2008; 10: 1265)
|
[30] |
Dexter D L, Schulman J H. J Chem Phys, 1954; 22: 1063
|
[31] |
Cheng B C, Xiao Y H, Wu G S, Zhang L D.Adv Funct Mater, 2004; 14: 913
|
[32] |
Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F, Tsai M J.Appl Phys Lett, 2008; 92: 200110
|
[33] |
Oduor A O, Gould R D.Thin Solid films, 1998; 317: 409
|
[34] |
Burrows P E, Shen Z, Bulovic V, McCarty D M, Forrest S R, Cronin J A, Thompson M E.J Appl Phys, 1996; 79: 7991
|
[35] |
Talin A A, Leonard F, Swartzentruber B S, Wang X, Hersee S D.Phys Rev Lett, 2008; 101: 076802
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|