Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 95-102    DOI: 10.3724/SP.J.1037.2013.00210
Original Articles Current Issue | Archive | Adv Search |
EFFECT OF Ce-Cu CODOPING ON OPTOELECTRONIC PROPERTY OF SnO2 FILM
SHAN Linting, BA Dechun(), CAO Qing, HOU Xueyan, LI Jianchang
Vacuum and Fluid Engineering Research Center, Northeastern University, Shenyang 110819
Cite this article: 

SHAN Linting, BA Dechun, CAO Qing, HOU Xueyan, LI Jianchang. EFFECT OF Ce-Cu CODOPING ON OPTOELECTRONIC PROPERTY OF SnO2 FILM. Acta Metall Sin, 2014, 50(1): 95-102.

Download:  HTML  PDF(9054KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tin dioxide (SnO2) is a wide band gap semiconductor. SnO2 has recently received a large interest because of its multiple technological applications, including solar cells, optoelectronic devices, flat panel displays, gas sensors, architectural windows and catalysts, owing to its good optical and electrical properties and excellent chemical and thermal stability. Compared to traditional materials which based on sulfur compound, rare earth elements doped oxides possess obvious advantages, such as good chemical stability, high transparency in the range of visible light, and nontoxic. In this work, the Ce-Cu codoping of SnO2 thin films were prepared by sol-gel method. The influence of Ce-Cu codoping on the microstructural and optoelectrical properties has been investigated. Both Cu and Ce dopants are incorporated at substitutional sites (C u S n 2 + , C e S n 3 + ), acting as the acceptors. With increasing the Ce content, the film grain size and optical band gap decrease, while the resistivity decreases at first and then increases due to the change of spatial trap distribution. The ultraviolet peak of the films can be attributed to the oxygen vacancies, while the blue emission at 470 nm belongs to the electron transition between 5d excited state and 4f state of Ce3+ ion. Besides, the intensity of the visible emission peak is influenced by the Ce content. The band structure, density of states of SnO2, intrinsic and doped separately with Cu and Ce were investigated by first-principles full potential linearized augmented plane wave method. The Ce-Cu co-dopants make the conduction band shift down and induce a fully occupied impurity band above the valance band, and 4f orbital of Ce inserts into the conduction band, which leads the shift of the bottom of the conduction band to lower energy zone and narrowing of band gap, thus the band gap is decreased and the conductivity is improved.

Key words:  Ce-Cu codoped SnO2      sol-gel method      photoelectric characteristics      first-principles     
Received:  23 April 2013     
ZTFLH:  O472  
Fund: Supported by Fundamental Research Funds for the Central Universities (No.N110403001)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00210     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/95

Fig.1  

不同浓度Ce-Cu共掺杂SnO2薄膜的XRD谱

Sample a=b / nm c / nm Volume / nm3 Grain size / nm
Pure 0.4737 0.3185 0.07147 7.6
1%Cu 0.4736 0.3184 0.07143 7.4
0.5%CeCu 0.4737 0.3186 0.07151 6.6
1%CeCu 0.4751 0.3197 0.07215 6.1
3%CeCu 0.4738 0.3187 0.07155 5.4
5%CeCu 0.4755 0.3199 0.07234 3.7
7%CeCu 0.4746 0.3193 0.07191 3.4
表1  不同浓度Ce-Cu共掺杂SnO2薄膜样品的晶格常数和晶粒尺寸
  

不同浓度Ce-Cu共掺杂SnO2薄膜的SEM像

  

不同浓度Ce-Cu 共掺杂SnO2 薄膜的透射光谱及(αhν)2 - hν 关系曲线

Fig.4  

不同浓度Ce-Cu共掺杂SnO2薄膜的光致发光光谱

Fig.5  

不同浓度Ce-Cu共掺杂SnO2薄膜的I-E曲线及lgI-lgE曲线斜率值

Sample Resistivity / (103 Ωcm) Carrier mobility / (cm2 V-1s-1)
Pure 1.75 162.15
1%Cu 9.02 2.14
0.5%CeCu 8.05 54.60
1% CeCu 7.91 46.65
3%CeCu 2.43 171.35
5%CeCu 6.54 1.35
7%CeCu 14.69 2.45
表2  不同浓度Ce-Cu共掺杂SnO2薄膜的电阻率和载流子迁移率
Fig.6  

不同浓度Ce-Cu共掺杂SnO2薄膜的总态密度及分态密度图

[1] Coutts T J, Young D L, Li X, Mulligan W P, Wu X.J Vac Sci Technol, 2000; 18: 2646
[2] Svance A, Antoncik J E.Phys Chem Solids, 1987; 48: 171
[3] Harrison P G, Willett M J.Nature, 1988; 332: 337
[4] Dolbec R, Khakani M A, Serventi A M, Trudeau M, Saint-Jacques R G. Thin Solid Films, 2001; 419: 230
[5] Ellmer K.Nat Photonics, 2012; 282: 809
[6] Ji Z G, He Z J, Song Y L.Acta Phys Sin, 2003; 53: 4330
(季振国, 何振杰, 宋永梁. 物理学报, 2003; 53: 4330)
[7] Huang J Y, Fan G H, Zheng S W, Niu Q L, Li S T, Cao J X, Su J, Zhang Y.Chin Phys, 2010; 19B: 047205
[8] Rockenberger J, Zum Felde U, Tischer M, Troger L, Haase M, Weller H. J Chem Phys, 2000; 112: 4296
[9] Jung Y S, Choi Y W, Lee D W.Thin Solid Films, 2003; 440: 278
[10] Coey M D, Douvalis A P, Fitzgerald C B, Venkatesan M.Appl Phys Lett, 2004; 84: 1332
[11] Ghimbeu C M, Lumbreras M, Schoonman J, Siadat M.Sensors, 2009; 9: 9122
[12] Li Y F, Deng R, Tian Y F, Yao B, Wu T.Appl Phys Lett, 2012; 100: 172402
[13] Chang S S, Jo M S.Ceram Int, 2007; 33: 511
[14] Liu Y K, Tian Y, Feng Y J, Wu X W, Han X G. JInorg Mater, 2008; 23: 891
(刘延坤, 田 言, 冯玉杰, 武晓威, 韩霞光. 无机材料学报, 2008; 23: 891)
[15] Chen S, Zhao X R, Xie H Y, Liu J M, Duan L B, Ba X J, Zhao J L.Appl Surf Sci, 2012; 258: 3255
[16] Gu F, Wang S F, Lv M K, Zhou G J, Xu D, Yuan D R. J Phys Chem, 2012; 108B: 8119
[17] Yamamoto T, Katayama Y H. Physica, 2001; 302B: 155
[18] Han X B. Master Thesis, Northeastern University, Shenyang, 2010
(韩晓波. 东北大学硕士学位论文, 沈阳, 2010)
[19] Ghimbeu C M, Van Landschoot R C, Schoonman J, Lumbreras M, Antoncik J E.J Eur Ceram Soc, 2007; 27: 207
[20] Lun N, Hu C X, Wu Y S.J Shandong Univ, 2003; 33: 605
(伦 宁, 胡春霞, 吴佑实. 山东大学学报, 2003; 33: 605)
[21] Oadri S B, Yang J P, Skelton E F, Ratna B R.Appl Phys Lett, 1997; 70: 1020
[22] Williamson G K, Hall W H.Acta Metall, 1953; 1: 22
[23] Kissine V V, Voroshilov S A, Sysoev V V.Thin Solid Films, 1999; 384: 304
[24] Liu S X,Liu H. The Basis and Application of Photocatalysis and Photoelectrocatalysis. Beijing: Chemical Industry Press, 2006: 21
(刘守新,刘 鸿.光催化及光电催化基础与应用. 北京: 化学工业出版社, 2006: 21)
[25] Yan J K, Gan G Y, Chen H F, Zhang X W, Sun J L.Semiconductor Technol, 2007; 32: 109
(严继康, 甘国友, 陈海芳, 张小文, 孙加林. 半导体技术, 2007; 32: 109)
[26] Terrier C, Chatelon J P, Roger J A.Thin Solid Films, 2007; 295: 95
[27] Zhang B Y, Yao B, Li Y F, Zhang Z Z, Li B H, Shan D X, Shen D Z.Appl Phys Lett, 2007; 97: 222101
[28] Kim T W, Lee D U, Yoon Y S.J Appl Phys, 2000; 88: 3759
[29] Peng Z J, Yang Y Y, Wang C B, Fu Z Q.Acta Metall Sin, 2008; 10: 1265
(彭志坚, 杨义勇, 王成彪, 付志强. 金属学报, 2008; 10: 1265)
[30] Dexter D L, Schulman J H. J Chem Phys, 1954; 22: 1063
[31] Cheng B C, Xiao Y H, Wu G S, Zhang L D.Adv Funct Mater, 2004; 14: 913
[32] Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F, Tsai M J.Appl Phys Lett, 2008; 92: 200110
[33] Oduor A O, Gould R D.Thin Solid films, 1998; 317: 409
[34] Burrows P E, Shen Z, Bulovic V, McCarty D M, Forrest S R, Cronin J A, Thompson M E.J Appl Phys, 1996; 79: 7991
[35] Talin A A, Leonard F, Swartzentruber B S, Wang X, Hersee S D.Phys Rev Lett, 2008; 101: 076802
[1] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[2] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[3] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[4] GAO Xiang, ZHANG Guikai, XIANG Xin, LUO Lizhu, WANG Xiaolin. Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study[J]. 金属学报, 2020, 56(6): 919-928.
[5] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[6] Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. 金属学报, 2018, 54(6): 935-942.
[7] Yuchao FENG, Weiwei XING, Shoulong WANG, Xingqiu CHEN, Dianzhong LI, Yiyi LI. First-Principles Study of Hydrogen Behaviors at Oxide/Ferrite Interface in ODS Steels[J]. 金属学报, 2018, 54(2): 325-338.
[8] ZHANG Xudong, WANG Shaoqing. FIRST-PRINCIPLES INVESTIGATION OF THE THERMODYNAMICS PROPERTIES OF Al3Sc AND Al3Zr INTERMETALLICS[J]. 金属学报, 2013, 29(4): 501-505.
[9] LI Honglin, ZHANG Zhong, LU Yingbo, HUANG Jinzhao, LIU Ruxi. FIRST-PRINCIPLES AND EXPERIMENTAL STUDY ON THE ELECTRONIC AND OPTICAL PROPERTIES OF Eu DOPED ZnO STRUCTURE[J]. 金属学报, 2013, 29(4): 506-512.
[10] MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY[J]. 金属学报, 2013, 49(10): 1227-1233.
[11] ZHANG Hui WANG Shaoqing. FIRST-PRINCIPLES STUDY ON THE PHASE STABILITY OF Mg-La AND Mg-Nd BINARY ALLOYS[J]. 金属学报, 2012, 48(7): 889-894.
[12] DONG Minghui HAN Peide ZHANG Caili YANG Yanqing ZHANG Lili LI Hongfei. FIRST-PRINCIPLES STUDY OF STACKING FAULT ENERGY AND DEFORMATION TWIN\par ENERGY IN Al-Mg ALLOYS[J]. 金属学报, 2011, 47(5): 573-577.
[13] LI Ying MA Beiyue WANG Zhenming JIANG Maofa. PREPARATION OF Na1.4Co2O4 BASED THERMOELECTRIC MATERIALS BY SOL-GEL METHOD AND CHARACTERIZATION[J]. 金属学报, 2011, 47(1): 109-114.
[14] SU Zhenxing WANG Yuchen WANG Shaoqing. FIRST-PRINCIPLES STUDY OF THE PHASE STRACTURES OF Al-Sc ALLOYS[J]. 金属学报, 2010, 46(5): 623-628.
[15] ZENG Xianbo PENG Ping. CALCULATION OF MECHANICAL PROPERTIES OF α2-Ti-25Al-xNb ALLOYS BY FIRST-PRINCIPLES[J]. 金属学报, 2009, 45(9): 1049-1056.
No Suggested Reading articles found!