Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 103-109    DOI: 10.3724/SP.J.1037.2013.00255
Original Articles Current Issue | Archive | Adv Search |
EFFECTIVE PAIR INTERACTION POTENTIAL OF INTERSTITIAL ATOMS IN METAL
ZHANG Zhipeng, LEI Mingkai
Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
Cite this article: 

ZHANG Zhipeng, LEI Mingkai. EFFECTIVE PAIR INTERACTION POTENTIAL OF INTERSTITIAL ATOMS IN METAL. Acta Metall Sin, 2014, 50(1): 103-109.

Download:  HTML  PDF(5000KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

利用Hillert亚点阵理论和点阵静力学分析方法, 建立了简谐近似下包含弹性效应即应变诱发相互作用的间隙合金总能量模型, 获得了间隙原子间有效相互作用势. 分别将描述基体亚点阵和间隙亚点阵的能量及其相互作用的点阵静力学方程, 在标准态附近作简谐近似, 给出了包括化学相互作用势、Kanzaki力和动力学矩阵等系数的间隙合金总能量公式, 再依据点阵静力学方程的平衡条件, 确定了包含应变诱发相互作用的间隙原子间有效相互作用势. 合金间隙原子间的有效相互作用势取决于化学相互作用势以及Kanzaki力与动力学矩阵耦合的应变诱发相互作用势, 与原子种类、 点阵参数及合金浓度相关. 利用间隙合金的总能量模型计算了δ-Pu中He原子的有效相互作用势, 结果表明, 随着He原子浓度增加, 间隙亚点阵常数增大, 化学相互作用势和应变诱发相互作用势均减小, 造成有效相互作用势降低. 有效相互作用主要受应变诱发相互作用的影响.

Key words:  effective pair interaction potential      total energy of alloy      interstitial atom      lattice static formalism      Pu      He     
ZTFLH:  O614.353  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00255     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/103

[1] Khachaturyan A G. Theory of Structural Transformations in Solids. New York: John Wiley and Sons, 1983: 446
[2] Cao B S, Lei M K.Phys Rev, 2007; 76B: 212301
[3] Lepri S, Livi R, Politi A.Phys Rev Lett, 1997; 78: 1896
[4] Hu B, Li B, Zhao H.Phys Rev, 1998; 57E: 2992
[5] Zener C.Phys Rev, 1948; 74: 639
[6] Udyansky A, Von Pezold J, Bugaev V N, Friák M, Neugebauer J.Phys Rev, 2009; 79B: 224112
[7] Varvenne C, Finel A, Le Bouar Y, Fèvre M.Phys Rev, 2012; 86B: 184203
[8] Matsubara T J. J Phys Soc Jpn, 1952; 7: 270
[9] Kanzaki H.J Phys Chem Solids, 1957; 2: 24
[10] Hillert M, Staffansson L I.Acta Chem Scand, 1970; 24: 3618
[11] Cook H E, Fontaine D D.Acta Metall, 1969; 17: 915
[12] Dremov V, Sapozhnikov P, Kutepov A, Anisimov V, Korotin M, Shorikov A, Preston D L, Zocher M A.Phys Rev, 2008; 77B: 224306
[13] Wheeler D W, Bayer P D.J Alloys Compd, 2007; 444: 212
[14] Dremov V V, Karavaev A V, Sapozhnikov F A, Vorobyova M A, Preston D L, Zocher M A.J Nucl Mater, 2011; 414: 471
[15] Jeffries J R, Wall M A, Moore K T, Schwartz A J.J Nucl Mater, 2011; 410: 84
[16] Wyttenbach T, Bleiholder C, Bowers M T.Anal Chem, 2013; 85: 2191
[17] Cerutti D S, Rice J E, Swope W C, Case D A.J Phys Chem, 2013; 117B: 2328
[18] Ansari R, Sadeghi F, Motevalli B. Commun Nonlinear Sci Numerical Simul, 2013; 18: 769
[19] Ao B Y, Wang X L, Hu W Y, Yang J Y, Xia J X. J Alloys Compd, 2007; 444-445: 300
[20] Johnson R A.J Phys, 1973; 3F: 295
[21] Schwerdtfeger P, Gaston N, Krawczyk R P, Tonner R, Moyano G E.Phys Rev, 2006; 73B: 064112
[22] Fevre M, Varvenne C, Fine A, Bouar Y L.Philos Mag, 2013; 93: 1563
[23] Martin G.Phys Rev, 1990; 41B: 2279
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[4] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[5] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[6] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[7] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[8] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[9] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[10] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!