Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (6): 919-928    DOI: 10.11900/0412.1961.2019.00411
Current Issue | Archive | Adv Search |
Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study
GAO Xiang1, ZHANG Guikai2, XIANG Xin2, LUO Lizhu1, WANG Xiaolin3()
1.Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, China
2.Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
3.China Academy of Engineering Physics, Mianyang 621900, China
Cite this article: 

GAO Xiang, ZHANG Guikai, XIANG Xin, LUO Lizhu, WANG Xiaolin. Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study. Acta Metall Sin, 2020, 56(6): 919-928.

Download:  HTML  PDF(3084KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxygen adsorption behavior of V(110) surfaces and the alloying effects of Al, Ti, Cr are calculated using first-principles method. Then the surface phase diagrams for oxygen adsorption on binary V alloy surfaces are constructed combining with thermodynamics formalism. The microscopic mechanisms for oxidation of V alloy surfaces are analyzed. The calculated results of surface energies indicate that Al and Ti are preferable to be segregated on V(110) surfaces, while Cr is not. The oxygen adsorption behavior indicates that Al and Ti are favored to be oxidized on V(110) surfaces, while Cr is not. In this work, the microscopic oxidation mechanisms of V alloy surfaces have been successfully used to explain the experimental results of oxidation behavior. Moreover, the selective oxidation behavior of V-Al alloys has been predicted, and it would provide guidance for the fabrication of oxide tritium permeation barrier.

Key words:  first-principles      V(110) surface      oxygen adsorption      surface phase diagram      oxide tritium permeation barrier     
Received:  02 December 2019     
ZTFLH:  TG17  
Fund: National Natural Science Foundation of China(11975213);National Research Project on the Development of Magnetically Confined Fusion Energy(2017YFE0300304);National Research Project on the Development of Magnetically Confined Fusion Energy(2018YFE0313100)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00411     OR     https://www.ams.org.cn/EN/Y2020/V56/I6/919

Fig.1  Schematic of possible adsorption sites on the V(110) surface (ot: on-top; sb: short-bridge; lb: long-bridge; 3f: 3-fold hollow)
Color online
Fig.2  Binding energies of oxygen on V(110) surface at different adsorption sites
Fig.3  Charge density difference contours for O adsorbed on V(110) in 3f sites with the oxygen coverage Θ=0.25 ML (a) and Θ=1 ML (b) (The contour plane is along the [121ˉ] direction and perpendicular to the (110) surface. The red and blue regions represent the accumulation and depletion of charge density, respectively; unit: e/?3)
Color online
Fig.4  Partial densities of states (PDOSs) for O and surface-layer V atoms with Θ=0.25 ML (a) and Θ=1 ML (b) when O adsorbed in 3f sites (EF—Fermi level)
Fig.5  The relative surface energies (γRS) vs the chemical potential ΔμX (X=Al, Ti and Cr) of alloy elements for the clean V(110)-Al (a), V(110)-Ti (b) and V(110)-Cr (c) alloy surfaces
Fig.6  Oxygen binding energies on the V(110)-Al (a), V(110)-Ti (b), V(110)-Cr (c) surfaces as functions of oxygen coverage
Fig.7  Charge density difference contours for O adsorbed on V(110)-Al (a), V(110)-Ti (b) and V(110)-Cr (c) with Θ=0.25 ML(Each contour plane is along the [121ˉ] direction and perpendicular to the (110) surface. The red and blue regions represent the accumulation and depletion of charge density, respectively; unit: e/?3)
Color online
Fig.8  PDOSs for O adsorbed on V(110)-Al (a), V(110)-Ti (b) and V(110)-Cr (c) surfaces with Θ=0.25 ML
Fig.9  The calculated relative surface energies of O/V(110)-Al (a, b), O/V(110)-Ti (c, d) and O/V(110)-Cr (e, f) systems under X rich (a, c, e) and V rich (b, d, f) conditions; and the calculated surface phase diagrams of the relative surface energies for O/V(110)-Al (g), O/V(110)-Ti (h) and O/V(110)-Cr (i) systems (ΔμO—chemical potential of oxygen, p—oxygen partial pressure, p0—standard atmospheric pressure)
Color online
[1] Muroga T, Chen J M, Chernov V M, et al. Present status of vanadium alloys for fusion applications [J]. J. Nucl. Mater., 2014, 455: 263
doi: 10.1016/j.jnucmat.2014.06.025
[2] Dolan M D, Kellam M E, McLennan K G, et al. Hydrogen transport properties of several vanadium-based binary alloys [J]. Int. J. Hydrogen Energy, 2013, 38: 9794
doi: 10.1016/j.ijhydene.2013.05.073
[3] Xiang X, Zhang G K, Wang X L, et al. Review on preparation techniques of FeAl/Al2O3 composite tritium permeation barriers [J]. Rare Met. Mater. Eng., 2016, 45: 522
向 鑫, 张桂凯, 汪小琳等. FeAl/Al2O3复合阻氚涂层制备技术的研究进展 [J]. 稀有金属材料与工程, 2016, 45: 522
[4] Zhang G K, Li J, Chen C A, et al. Tritium permeation barrier-aluminized coating prepared by Al-plating and subsequent oxidation process [J]. J. Nucl. Mater., 2011, 417: 1245
doi: 10.1016/j.jnucmat.2010.12.285
[5] Sasaki T, Yakou T. Features of intermetallic compounds in aluminized steels formed using aluminum foil [J]. Surf. Coat. Technol., 2006, 201: 2131
doi: 10.1016/j.surfcoat.2006.03.018
[6] Aiello A, Ciampichetti A, Benamati G. An overview on tritium permeation barrier development for WCLL blanket concept [J]. J. Nucl. Mater., 2004, 329-333: 1398
doi: 10.1016/j.jnucmat.2004.04.205
[7] Wulf S E, Krauss W, Konys J. Comparison of coating processes in the development of aluminum-based barriers for blanket applications [J]. Fusion Eng. Des., 2014, 89: 2368
doi: 10.1016/j.fusengdes.2014.01.078
[8] Han S L, Li H L, Wang S M, et al. Influence of silicon on hot-dip aluminizing process and subsequent oxidation for preparing hydrogen/tritium permeation barrier [J]. Int. J. Hydrogen Energy, 2010, 35: 2689
doi: 10.1016/j.ijhydene.2009.04.033
[9] Yang H G, Zhan Q, Zhao W W, et al. Study of an iron-aluminide and alumina tritium barrier coating [J]. J. Nucl. Mater., 2011, 417: 1237
doi: 10.1016/j.jnucmat.2011.03.040
[10] Zhang G K, Li J, Chen C A, et al. A new preparing method and performances of FeAl/Al2O3 tritium permeation barrier [J]. Rare Met. Mater. Eng., 2011, 40: 1120
张桂凯,李 炬, 陈长安等. FeAl/Al2O3阻氚层的制备新方法与性能 [J]. 稀有金属材料与工程, 2011, 40: 1120
[11] Peng X X. Fabrication and characterization of V-Al/Al2O3 tritium permeation barrier on V-5Cr-5Ti alloy substrate [D]. Mianyang: China Academy of Engineering Physics, China, 2016
彭雪星. V-5Cr-5Ti表面V-Al/Al2O3阻氚涂层的制备及性能研究 [D]. 绵阳: 中国工程物理研究院, 2016
[12] Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
doi: 10.1149/1.2779605
[13] Wang G, Gleeson B, Douglass D L. An extension of Wagner's analysis of competing scale formation [J]. Oxid. Met., 1991, 35: 317
doi: 10.1007/BF00738292
[14] Keller J G, Douglass D L. The high-temperature oxidation behavior of vanadium-aluminum alloys [J]. Oxid. Met., 1991, 36: 439
doi: 10.1007/BF01151591
[15] Liang Y J, Che Y C. Handbook of Inorganic Materials Thermodynamics [M]. Shenyang: Northeast University Press, 1993: 45
梁英教, 车荫昌. 无机物热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993: 45
[16] Xu C H, Gao W, Gong H. Oxidation behaviour of FeAl intermetallics. The effects of Y and/or Zr on isothermal oxidation kinetics [J]. Intermetallics, 2000, 8: 769
doi: 10.1016/S0966-9795(00)00007-8
[17] Young D J, Naumenko D, Wessel E, et al. Effect of Zr additions on the oxidation kinetics of FeCrAlY alloys in low and high pO2 gases [J]. Metall. Mater. Trans., 2011, 42A: 1173
[18] Schmiedgen M, Graat P C J, Baretzky B, et al. The initial stages of oxidation of γ-TiAl: An X-ray photoelectron study [J]. Thin Solid Films, 2002, 415: 114
doi: 10.1016/S0040-6090(02)00551-5
[19] Zhao L L, Lin J P, Zhang L Q, et al. Initial stages of oxidation of Ti45Al7Nb0.4Y alloy at 900 ℃ in air [J]. J. Mater. Res., 2010, 25: 1204
doi: 10.1557/JMR.2010.0154
[20] Liu S Y, Liu S Y, Li D J, et al. Ab initio atomistic thermodynamics study on the oxidation mechanism of binary and ternary alloy surfaces [J]. J. Chem. Phys., 2015, 142: 064705
doi: 10.1063/1.4907718
[21] Liu S Y, Shang J X, Wang F H, et al. Ab initio study of surface self-segregation effect on the adsorption of oxygen on the γ-TiAl (111) surface [J]. Phys. Rev., 2009, 79B: 075419
[22] Wang L, Shang J X, Wang F H, et al. Oxygen adsorption on γ-TiAl surfaces and the related surface phase diagrams: A density-functional theory study [J]. Acta Mater., 2013, 61: 1726
doi: 10.1016/j.actamat.2012.11.047
[23] Gong L, Su Q L, Deng H Q, et al. The stability and diffusion properties of foreign impurity atoms on the surface and in the bulk of vanadium: A first-principles study [J]. Comput. Mater. Sci., 2014, 81: 191
doi: 10.1016/j.commatsci.2013.08.011
[24] Zhang X M, Li Y F, He Q L, et al. Investigation of the interstitial oxygen behaviors in vanadium alloy: A first-principles study [J]. Curr. Appl. Phys., 2018, 18: 183
doi: 10.1016/j.cap.2017.12.003
[25] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev., 1990, 41B: 7892(R)
[26] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev., 1992, 45B: 13244
[27] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
[28] Fischer T H, Almlof J. General methods for geometry and wave function optimization [J]. J. Phys. Chem., 1992, 96: 9768
doi: 10.1021/j100203a036
[29] Rochana P, Lee K, Wilcox J. Nitrogen adsorption, dissociation, and subsurface diffusion on the vanadium (110) surface: A DFT study for the nitrogen-selective catalytic membrane application [J]. J. Phys. Chem., 2014, 118C: 4238
[30] Kittel C. Introduction to Solid State Physics [M]. 7th Ed., New York: Wiley, 1996: 1
[31] Chohan U K, Koehler S P K, Jimenez-Melero E. Incipient FeO(111) monolayer formation during O-adsorption on Fe(110) surface [J]. Comput. Mater. Sci., 2017, 134: 109
doi: 10.1016/j.commatsci.2017.03.033
[32] Fujiwara M, Natesan K, Satou M, et al. Effects of doping elements on oxidation properties of V-Cr-Ti type alloys in several environments [J]. J. Nucl. Mater., 2002, 307-311: 601
doi: 10.1016/S0022-3115(02)01101-7
[33] Fujiwara M, Takanashi K, Satou M, et al. Influence of Cr, Ti concentrations on oxidation and corrosion resistance of V-Cr-Ti type alloys [J]. J. Nucl. Mater., 2004, 329-333: 452
doi: 10.1016/j.jnucmat.2004.04.090
[34] Natesan K, Uz M. Oxidation performance of V-Cr-Ti alloys [J]. Fusion Eng. Des., 2000, 51-52: 145
doi: 10.1016/S0920-3796(00)00308-2
[35] Natesan K, Soppet W K. Effect of oxygen and oxidation on tensile properties of V-5Cr-5Ti alloy [J]. J. Nucl. Mater., 1996, 233-237: 482
doi: 10.1016/S0022-3115(96)00235-8
[36] Maurice V, Despert G, Zanna S, et al. XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys [J]. Acta Mater., 2007, 55: 3315
doi: 10.1016/j.actamat.2007.01.030
[1] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[2] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[3] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[4] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[5] Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. 金属学报, 2018, 54(6): 935-942.
[6] Yuchao FENG, Weiwei XING, Shoulong WANG, Xingqiu CHEN, Dianzhong LI, Yiyi LI. First-Principles Study of Hydrogen Behaviors at Oxide/Ferrite Interface in ODS Steels[J]. 金属学报, 2018, 54(2): 325-338.
[7] SHAN Linting, BA Dechun, CAO Qing, HOU Xueyan, LI Jianchang. EFFECT OF Ce-Cu CODOPING ON OPTOELECTRONIC PROPERTY OF SnO2 FILM[J]. 金属学报, 2014, 50(1): 95-102.
[8] ZHANG Xudong, WANG Shaoqing. FIRST-PRINCIPLES INVESTIGATION OF THE THERMODYNAMICS PROPERTIES OF Al3Sc AND Al3Zr INTERMETALLICS[J]. 金属学报, 2013, 29(4): 501-505.
[9] LI Honglin, ZHANG Zhong, LU Yingbo, HUANG Jinzhao, LIU Ruxi. FIRST-PRINCIPLES AND EXPERIMENTAL STUDY ON THE ELECTRONIC AND OPTICAL PROPERTIES OF Eu DOPED ZnO STRUCTURE[J]. 金属学报, 2013, 29(4): 506-512.
[10] MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY[J]. 金属学报, 2013, 49(10): 1227-1233.
[11] ZHANG Hui WANG Shaoqing. FIRST-PRINCIPLES STUDY ON THE PHASE STABILITY OF Mg-La AND Mg-Nd BINARY ALLOYS[J]. 金属学报, 2012, 48(7): 889-894.
[12] DONG Minghui HAN Peide ZHANG Caili YANG Yanqing ZHANG Lili LI Hongfei. FIRST-PRINCIPLES STUDY OF STACKING FAULT ENERGY AND DEFORMATION TWIN\par ENERGY IN Al-Mg ALLOYS[J]. 金属学报, 2011, 47(5): 573-577.
[13] SU Zhenxing WANG Yuchen WANG Shaoqing. FIRST-PRINCIPLES STUDY OF THE PHASE STRACTURES OF Al-Sc ALLOYS[J]. 金属学报, 2010, 46(5): 623-628.
[14] ZENG Xianbo PENG Ping. CALCULATION OF MECHANICAL PROPERTIES OF α2-Ti-25Al-xNb ALLOYS BY FIRST-PRINCIPLES[J]. 金属学报, 2009, 45(9): 1049-1056.
[15] . FIRST-PRINCIPLES INVESTIGATION OF β PHASE STABILITY AND ELASTIC PROPERTY OF Ti-Mo ALLOYS[J]. 金属学报, 2008, 44(1): 19-22 .
No Suggested Reading articles found!