Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (3): 369-375    DOI: 10.11900/0412.1961.2018.00102
Current Issue | Archive | Adv Search |
First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys
Jing BAI1,2,3,4(),Shaofeng SHI1,2,Jinlong WANG1,2,Shuai WANG2,Xiang ZHAO1
1. Key Laboratory for Anisotropy and Texture of Materials Ministry of Education, Northeastern University, Shenyang 110819, China
2. School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
3. Hebei Provincial Laboratory for Dielectric and Electrolyte Functional Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
4. Key Laboratory of Advanced Metal Materials and Forming Technology in Qinhuangdao, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
Cite this article: 

Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys. Acta Metall Sin, 2019, 55(3): 369-375.

Download:  HTML  PDF(1858KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The main purpose of the present work is to explore the influence of the Ti addition on crystal structure, phase stability, magnetic properties and electronic structures of the Ni8Mn4-xGa4Tix (x is the number of Ti atoms in a unit cell, x=0, 0.5, 1, 1.5 and 2) alloys by first-principles calculations, aiming at providing the theoretical data and directions for developing high performance ferromagnetic shape memory alloys (FSMAs) in this alloy system. The formation energy results indicate that the doped Ti preferentially occupies the Mn sites in Ni2MnGa alloy. With the increase of Ti content, the optimized lattice parameter of the ferromagnetic austenite increases regularly. For the martensitic phase, the lattice parameter a increases while c decreases, leading to a decreased c/a ratio. The paramagnetic and ferromagnetic austenitic phases both become stable because their formation energies (Eform) gradually decrease with the increasing amount of Ti. The experimentally reported decrease in the Curie temperature with increasing Ti content is derived from the decrease of the total energy difference between the paramagnetic and the ferromagnetic austenite. The total magnetic moment is mainly contributed by Mn, while the magnetic moments of Ga and Ti are nearly zero. The total magnetic moment decreases notably when Mn is gradually substituted by Ti because the atomic magnetic moment of Ti is much less than that of Mn, which is in fair consistent with the experimental observations. The intensity of up-spin total density of state (DOS) decreased dramatically with the increase of the Ti content; whereas the change of the down-spin part below EF is not obvious. This feature gives rise to the decrease of the total magnetic moments in these alloys. The results of present work are particularly useful in guiding composition design and developing new type of magnetic shape memory alloy.

Key words:  Ni-Mn-Ga-Ti      first-principles calculation      phase stability      magnetic property     
Received:  19 March 2018     
ZTFLH:  TG139.6  
Fund: National Natural Science Foundation of China(51771044);National Natural Science Foundation of China(51431005);National Natural Science Foundation of China(51301036);High Technology Research and Development Program of China(SS2015AA031803);Fundamental Research Funds for the Central Universities(N130523001)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00102     OR     https://www.ams.org.cn/EN/Y2019/V55/I3/369

Fig.1  Schematics of crystal structures of Ni2MnGa alloy(a) cubic L21 austenite(b) tetragonal non-modulated martensite (NM)
xPhasea / nmc / nmc/a
0FA0.5794 (0.5823[35])
NM0.3794 (0.3852[36])0.6736 (0.6580[36])1.775 (1.708[36])
0.5FA0.5806
NM0.38460.65981.716
1FA0.5817
NM0.39090.64171.642
1.5FA0.5830
NM0.41040.58921.436
2FA0.5842
NM0.41250.58401.416
Table 1  Equilibrium lattice parameters (a and c) of the ferromagnetic austenite (FA) and NM phases of Ni8Mn4-xGa4Tix (x=0, 0.5, 1, 1.5 and 2) alloys
Fig.2  Formation energies (Eform) of the paramagnetic and ferromagnetic austenites of the Ni8Mn4-xGa4Tix (x=0, 0.5, 1, 1.5 and 2) alloys
xEtot (PA) / eVEtot (FA) / eVΔEtot / eVEvaluated TC / K
0-91.214-95.4714.257365
0.5-91.708-95.3753.667314
1-92.222-95.2903.069263
1.5-92.740-95.2112.471212
2-93.239-95.1271.888162
Table 2  Total energies of the paramagnetic and ferromagnetic austenites (Etot (PA) and Etot (FA)), the total energy difference between the paramagnetic and ferromagnetic states (ΔEtot) and evaluated Curie temperature (TC) of Ni8Mn4-xGa4Tix (x=0, 0.5, 1, 1.5 and 2) alloys using scale factor method
xMNiMMnMGaMTiMtot
00.325 (0.334[42])3.085 (3.181[42])-0.050 (-0.037[42])3.732 (3.867[42], 3.960[43])
0.50.201~0.3263.065~3.130-0.056~-0.022-0.0773.222
10.179~0.1893.021~3.144-0.072~-0.019-0.1152.631
1.50.100~0.1923.055~3.135-0.057~-0.016-0.100~-0.0112.189
20.090~0.0953.063-0.042~-0.017-0.0511.680
Table 3  Calculated results of atomic magnetic moments (MNi, MMn, MGa and MTi) and total magnetic moments (Mtot) of austenitic Ni8Mn4-xGa4Tix (x=0, 0.5, 1, 1.5 and 2) alloys (10-23 A·m2)
Fig.3  Total density of states of ferromagnetic austenite for Ni8Mn4-xGa4Tix alloys with x=0 (a), x=1 (b) and x=2 (c) (EF—Fermi level. Circles in Fig.3 show that the intensity of up-spin total DOS (from -3.5 eV to -1 eV) decreases with the increasing content of Ti, and arrows in Fig.3 show that the intensity of the peak at 1.3 eV decreases with the Ti content in the down-spin total DOS)
Fig.4  Partial density of states of ferromagnetic austenite for Ni8Mn4-xGa4Tix alloys with x=0 (a), x=1 (b) and x=2 (c)
[1] Chernenko V A, Cesari E, Kokorin V V, et al. The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system [J]. Scr. Metall. Mater.,1995, 33: 1239
[2] Ullakko K, Huang J K, Kantner C, et al. Large magnetic-field-induced strains in Ni2MnGa single crystals [J]. Appl. Phys. Lett., 1996, 69: 1966
[3] Wu G H, Yu C H, Meng L Q, et al. Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition [J]. Appl. Phys. Lett., 1999, 75: 2990
[4] Pons J, Chernenko V A, Santamarta R, et al. Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys [J]. Acta Mater., 2000, 48: 3027
[5] Murray S J, Marioni M, Tello P G, et al. Giant magnetic-field-induced strain in Ni-Mn-Ga crystals: Experimental results and modeling [J]. Magn J. Magn. Mater., 2001, 226-230: 945
[6] Sozinov A, Likhachev A A, Lanska N, et al. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase [J]. Appl. Phys. Lett., 2002, 80: 1746
[7] Kaneko D, Lwaji Y, Sakamoto K, et al. Initial rotor position estimation of the interior permanent magnet synchronous motor [A]. Proceedings of the Power Conversion Conference—Osaka 2002 [C]. Osaka, Japan: IEEE, 2002: 259
[8] Morito H, Oikawa K, Fujita A, et al. A large magnetic-field-induced strain in Ni-Fe-Mn-Ga-Co ferromagnetic shape memory alloy [J]. J. Alloys Compd., 2013, 577: S372
[9] Gao L, Wang H B, Sui J H, et al. Microstructural characterisation and properties of quaternary Ni50Mn29Ga20Gd1 ferromagnetic shape memory alloy [J]. Mater. Sci. Technol., 2013, 29: 1095
[10] Tsuchiya K, Tsutsumi A, Ohtsuka H, et al. Modification of Ni-Mn-Ga ferromagnetic shape memory alloy by addition of rare earth elements [J]. Mater. Sci. Eng., 2004, A378: 370
[11] Tan C L, Zhang K, Tian X H, et al. Magnetic and mechanical properties of Ni-Mn-Ga/Fe-Ga ferromagnetic shape memory composite [J]. Chin. Phys., 2015, 24B: 057502
[12] Yang S Y, Liu Y, Wang C P, et al. The mechanism clarification of Ni-Mn-Fe-Ga alloys with excellent and stable functional properties [J]. J. Alloys Compd., 2013, 560: 84
[13] Cong D Y, Wang S, Wang Y D, et al. Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys [J]. Mater. Sci. Eng., 2008, A473: 213
[14] Bai J, Raulot J M, Zhang Y D, et al. The effects of alloying element Co on Ni-Mn-Ga ferromagnetic shape memory alloys from first-principles calculations [J]. Appl. Phys. Lett., 2011, 98: 164103
[15] Soroka A, Sozinov A, Lanska N, et al. Composition and temperature dependence of twinning stress in non-modulated martensite of Ni-Mn-Ga-Co-Cu magnetic shape memory alloys [J]. Scr.Mater.,2018, 144: 52
[16] Rame? M, Heczko O, Sozinov A, et al. Magnetic properties of Ni-Mn-Ga-Co-Cu tetragonal martensites exhibiting magnetic shape memory effect [J]. Scr. Mater., 2018, 142: 61
[17] Sozinov A, Soroka A, Lanska N, et al. Temperature dependence of twinning and magnetic stresses in Ni46Mn24Ga22Co4Cu4 alloy with giant 12% magnetic field-induced strain [J]. Scr.Mater.,2017, 131: 33
[18] Sarkar S K, Sarita, Babu P D, et al. Giant magnetocaloric effect from reverse martensitic transformation in Ni-Mn-Ga-Cu ferromagnetic shape memory alloys [J]. J. Alloys Compd., 2016, 670: 281
[19] Li C M, Luo H B, Hu Q M, et al. Temperature dependence of elastic properties of Ni2+xMn1-xGa and Ni2Mn(Ga1-xAlx) from first principles [J]. Phys. Rev., 2011, 84B: 174117
[20] Li Z B, Zou N F, Sánchez-Valdés C F, et al. Thermal and magnetic field-induced martensitic transformation in Ni50Mn25-xGa25Cux (0≤x≤7) melt-spun ribbons [J]. J. Phys., 2016, 49D: 025002
[21] Dong G F, Cai W, Gao Z Y, et al. Effect of isothermal ageing on microstructure, martensitic transformation and mechanical properties of Ni53Mn23.5Ga18.5Ti5 ferromagnetic shape memory alloy [J]. Scr. Mater., 2008, 58: 647
[22] Gao Z Y, Dong G F, Cai W, et al. Martensitic transformation and mechanical properties in an aged Ni-Mn-Ga-Ti ferromagnetic shape memory alloy [J]. J. Alloys Compd., 2009, 481: 44
[23] Dong G F, Gao Z Y, Tan C L, et al. Phase transformation and magnetic properties of Ni-Mn-Ga-Ti ferromagnetic shape memory alloys [J]. J. Alloys Compd., 2010, 508: 47
[24] Gao Z Y, Chen B S, Meng X L, et al. Site preference and phase stability of Ti doping Ni-Mn-Ga shape memory alloys from first-principles calculations [J]. J. Alloys Compd., 2013, 575: 297
[25] Hafner J. Atomic-scale computational materials science [J]. Acta Mater., 2000, 48: 71
[26] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
[27] Bl?chl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
[28] Kem G, Kresse G, Hafner J. Ab initio calculation of the lattice dynamics and phase diagram of boron nitride [J]. Phys. Rev., 1999, 59B: 8551
[29] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev., 1992, 45B: 13244
[30] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
[31] Li D, Wu D H, Zhu J W, et al. Synthesis of ultrafine Fe2O3 powders by decomposition of organic precursors and structural control by doping [J]. J. Mater. Sci. Lett., 2003, 22: 931
[32] Chen J, Li Y, Shang J X, et al. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles [J]. Phys J. Condens. Matter, 2009, 21: 045506
[33] Raulot J M, Domain C, Guillemoles J F. Fe-doped CuInSe2: An ab initio study of magnetic defects in a photovoltaic material [J]. Phys. Rev., 2005, 71B: 035203
[34] Bai J, Raulot J M, Zhang Y D, et al. Defect formation energy and magnetic structure of shape memory alloys Ni-X-Ga (X=Mn, Fe, Co) by first principle calculation [J]. J. Appl. Phys., 2010, 108: 064904
[35] Brown P J, Crangle J, Kanomata T, et al. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa [J]. Phys J. Condens. Matter, 2002, 14: 10159
[36] Cong D Y, Zetterstr?m P, Wang Y D, et al. Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20 K to 473 K [J]. Appl. Phys. Lett., 2005, 87: 111906
[37] Velikokhatnyi O I, Naumov I I. Electronic structure and instability of Ni2MnGa [J]. Phys. Solid State, 1999, 41: 617
[38] Webster P J, Ramadan M R I. Magnetic order in palladium-based heusler alloys: Part 2: Pd2MnIn1-ySby [J]. J. Magn. Magn.Mater., 1979, 13: 301
[39] White R M. Quantum Theory of Magnetism [M]. Berlin Heidelberg: Springer-Verlag, 1983: 392
[40] Sato K, Dederichs P H, Katayama-Yoshida H, et al. Exchange interactions and Curie temperatures in diluted magnetic semiconductor [J]. Magn J. Magn. Mater., 2004, 272-276: 1983
[41] Chakrabarti A, Biswas C, Banik S, et al. Influence of Ni doping on the electronic structure of Ni2MnGa [J]. Phys. Rev., 2005, 72B: 073103
[42] Ayuela A, Enkovaara J, Nieminen R M. Ab initio study of tetragonal variants in Ni2MnGa alloy [J]. Phys J. Condens. Matter, 2002, 14: 5325
[43] Bungaro C, Rabe K M, Corso A D. First-principles study of lattice instabilities in ferromagnetic Ni2MnGa [J]. Phys. Rev., 2003, 68B: 134104
[44] Bl?chl P E, Jepsen O, Andersen O K. Improved tetrahedron method for Brillouin-zone integrations [J]. Phys. Rev., 1994, 49B: 16223
[45] Zayak A T, Entel P, Enkovaara J, et al. First-principles investigations of homogeneous lattice-distortive strain and shuffles in Ni2MnGa [J]. Phys J. Condens. Matter, 2003, 15: 159
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[3] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[4] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[5] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[6] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[7] Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. 金属学报, 2018, 54(6): 935-942.
[8] Jun HUANG, Haiwen LUO. Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel[J]. 金属学报, 2018, 54(3): 377-384.
[9] Yachao SUN, Minggang ZHU, Rui HAN, Xiaoning SHI, Nengjun YU, Liwei SONG, Wei LI. Magnetic Viscosity of Anisotropic Rare Earth Permanent Films[J]. 金属学报, 2018, 54(3): 457-462.
[10] Yuchao FENG, Weiwei XING, Shoulong WANG, Xingqiu CHEN, Dianzhong LI, Yiyi LI. First-Principles Study of Hydrogen Behaviors at Oxide/Ferrite Interface in ODS Steels[J]. 金属学报, 2018, 54(2): 325-338.
[11] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[12] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[13] Jing BAI,Ze LI,Zhen WAN,Xiang ZHAO. A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys[J]. 金属学报, 2017, 53(1): 83-89.
[14] ZHANG Xudong, WANG Shaoqing. FIRST-PRINCIPLES INVESTIGATION OF THE THERMODYNAMICS PROPERTIES OF Al3Sc AND Al3Zr INTERMETALLICS[J]. 金属学报, 2013, 29(4): 501-505.
[15] MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY[J]. 金属学报, 2013, 49(10): 1227-1233.
No Suggested Reading articles found!