Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 88-94    DOI: 10.3724/SP.J.1037.2013.00503
Original Articles Current Issue | Archive | Adv Search |
UPCONVERSION WHITE PHOTOLUMINESCENCE AND FERROELECTRIC PROPERTY FOR Er3+-Tm3+- Yb3+ TRI-CODOPED Bi4Ti3O12 THIN FILM
SUN Lina1(), TAN Jun2,3, BA Dechun1, YUAN Peixin1
1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819
2 College of Sciences, Northeastern University, Shenyang 110819
3 Research Institute, Northeastern University, Shenyang 110819
Cite this article: 

SUN Lina, TAN Jun, BA Dechun, YUAN Peixin. UPCONVERSION WHITE PHOTOLUMINESCENCE AND FERROELECTRIC PROPERTY FOR Er3+-Tm3+- Yb3+ TRI-CODOPED Bi4Ti3O12 THIN FILM. Acta Metall Sin, 2014, 50(1): 88-94.

Download:  HTML  PDF(6686KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Er3+-Tm3+-Yb3+ tri-codoped Bi4Ti3O12 thin films were prepared by chemical solution deposition method and its upconversion (UC) photoluminescence and ferroelectric properties were studied. There are four emission bands in the visible UC luminescence spectra excited by 980 nm infrared light at room temperature. The 478 nm blue emission band corresponds to 1G43H6 transition of Tm3+, and the 527, 548 nm green emission bands correspond to 2H11/2 4I15/2 and 4S3/24I15/2 transitions of Er3+, and the 657 nm red emission band corresponds to 4F9/24I15/2 transition of Er3+ and 1G43F4 transition of Tm3+. The fluorescent color can be tuned by adjusting Er3+, Tm3+ and Yb3+ concentrations. For Bi3.59-xErxTm0.01Yb0.4Ti3O12 (BErxTYT) thin films with fixed Tm3+ and Yb3+ concentrations, the intensity ratio of green and red emissions to blue one gradually increased with the increase of Er3+ concentrations, and the quenching concentration of Er3+ is only about 1.75‰ (mole fraction). For Bi3.593-yEr0.007TmyYb0.4Ti3O12 (BETmyYT) thin films with fixed Er3+ and Yb3+ concentrations, the intensity ratio of green and red emissions to blue one decreased with the increase of Tm3+ concentrations, and Tm3+ quenching concentration is about 2.5‰. For Bi3.98-zEr0.01Tm0.01YbzTi3O12 (BETYbzT) thin films with fixed Er3+ and Tm3+ concentrations, the intensity ratio of blue or red emission to green one increase with increase of Yb3+ concentrations, and Yb3+ quenching concentration is less than 5 mol% for the luminescence from Er3+ and lager than 18 mol% for the luminescence from Tm3+. The optimal color coordinate in these films is (0.31, 0.34), close to standard white-light coordinate of (0.33, 0.33), which appears in Bi3.5815Er0.0085Tm0.01Yb0.4Ti3O12 thin film. The color coordinate has only a little change with increasing pumping power, which suggests that luminescence from the thin films has good color stability. There exist significant energy transfers from Er3+ to Tm3+, which will affect the relative intensities of blue, green and red emissions and their quenching concentrations by analyzing the UC emission mechanism of the thin films. The remnant polarization value of the film prepared on Pt/Ti/SiO2/Si substrate reaches the maximum and is equal to 27.8 μC/cm2 when the total codoping concentration of Er3+, Tm3+ and Yb3+ is about 10% (Bi3.5815Er0.0085Tm0.01Yb0.4Ti3O12 film).

Key words:  white photoluminescence      ferroelectric property      upconversion      thin film     
Received:  20 August 2013     
ZTFLH:  O484.4  
Fund: Supported by Programs for Science and Technology Development of Liaoning Province(No.2012216033), Fundamental Research Funds for the Central Universities (No.N120403013), Programs for Science and Technology Development of Shenyang(No.F11-174-9-00) and Science and Technology Plan Project of Shenyang (No.F12-277-1-60)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00503     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/88

Fig.1  

在石英玻璃和Pt(111)/Ti/SiO2/Si衬底上制备的Bi3.5815Er0.0085Tm0.01Yb0.4Ti3O12薄膜的XRD谱

Fig.2  

980 nm红外光激发下 Bi3.59-xErxTm0.01Yb0.4Ti3O12(BErxTYT)薄膜的上转换荧光光谱

Fig.3  

980 nm红外光激发下 Bi3.593-yEr0.007TmyYb0.4Ti3O12 (BETmyYT) 薄膜的上转换荧光光谱

Fig.4  

980 nm红外光激发下 Bi3.98-zEr0.01Tm0.01YbzTi3O12(BETYbzT) 薄膜的上转换荧光光谱

Fig.5  

980 nm的红外激光器在不同功率红外光激发下 Bi3.585Er0.005Tm0.01Yb0.4Ti3O12薄膜的上转换荧光光谱

Fig.6  

980 nm红外光激发下BETYT薄膜的能级及上转换机制示意图

Fig. 7  

在Pt(111)/Ti/SiO2/Si衬底上制备Bi3.5815Er0.0085-Tm0.01Yb0.4Ti3O12薄膜的场强-极化磁滞回线

[1] Hou X R, Zhou S M, Jia T T, Lin H, Teng H.J Alloys Compd, 2011; 509: 2793
[2] Chen D Q, Wang Y S, Zheng K L, Guo T L, Yu Y L, Huang P.Appl Phys Lett, 2007; 91: 251903
[3] Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G.Nat Mater, 2011; 10 : 968
[4] Sivakumar S, Van Veggel F C, Raudsepp M.J Am Chem Soc, 2005; 127: 12464
[5] Van der Ende B M, Aarts L, Meijerink A.Phys Chem Chem Phys, 2009; 11: 11081
[6] Wang D Y, Yin M, Xia S D, Makhov V N, Khaidukov N M, Krupa J C.J Alloys Compd, 2004; 368:337
[7] Xu C F, Ma M, Zeng S J, Ren G Z, Yang L W, Yang Q B.J Alloys Compd, 2011; 509: 7943
[8] Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G.Nat Lett, 2010; 463: 1061
[9] Gandhi Y, Ramachandra R M V, Srinvasa R C, Srikumar T, Kityk I V, Veeraiah N.J Appl Phys, 2010; 108: 023102
[10] Liu F, Ma E, Chen D Q, Yu Y L, Wang Y S.J Phys Chem, 2006; 110B: 20843
[11] Chen X Q, Li Y L, Kong F, Li L P, Sun Q, Wang F P.J Alloys Compd, 2012; 541: 505
[12] Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H.J Electrochem Soc, 2011; 158: G128
[13] Gao F, Zhang Q Y, Ding G J, Qin N, Bao D H.J Am Ceram Soc,2011; 94: 3867
[14] Wang R, Liu L, Sun J C, Qian Y N, Zhang Y S, Xu Y L. Opt Commun, 2012; 285: 957
[15] Wang H S, Duan C K, Tanner P A.J Phys Chem, 2008; 112C: 16651
[16] Zhou H, Wu G H, Gao F, Qin N, Bao D H.IEEE T Ultrason Ferr, 2010; 57: 2134
[17] Ruan K B, Chen X M, Liang T, Wu G H, Bao D H.J Appl Phys, 2008; 103: 074101
[18] Gunawan L, Lazar S, Gautreau O, Harnagea C, Pignolet A, Botton G A. Appl Phys Lett, 2009; 95: 192902
[19] Watanabe T, Funakubo H, Osada M, Uchida H, Okada I. J Appl Phys, 2005; 98: 024110
[20] Guo D Y, Li M Y, Wang J, Liu J, Yu B F, Yang B.Appl Phys Lett, 2007; 91: 232905
[21] Wyszecki G, Stiles W S. Color Science: Concepts and Methods, Quantitative Data and Formulae. Hoboken: John Wiley & Sons Inc, 2000: 130
[22] Ajroud M, Haouari M, Ben Ouada H, Mâaref H, Brenier A, Champagnon B.Mater Sci Eng, 2006; C26: 523
[23] Oliveira R C, Cavalcante L S, Sczancoski J C, Aguiar E C, Espinosa J W M, Varela J A, Pizani P S, Longo E.J Alloys Compd, 2009; 478: 661
[24] Ding G J, Gao F, Wu G H, Bao D H.J Appl Phys, 2011; 109: 123101
[25] Das G K, Tan T T Y.J Phys Chem, 2008; 112C: 11211
[26] Yeh D C, Petrin R R, Sibley W A, Madigou V, Adam J L, Suscavage M J.Phys Rev, 1989; 39B: 80
[27] Xiao Z S, Serna R, Afonso C N. J Appl Phys, 2007; 101: 033112
[28] Chan E M, Gargas D J, Schuck P J, Milliron D J.J Phys Chem, 2012; 116B: 10561
[29] Seo S Y, Shin J H, Bae B S, Park N, Penninkhof J J, Polman A.Appl Phys Lett, 2003; 82: 3445
[30] Pollnau M, Gamelin D R, Lüthi S R, Güdel H U, Hehlen M P.Phys Rev, 2000; 61B: 3337
[31] Ostermayer Jr F W, Van der Ziel J P, Marcos H M, Van Uitert L G, Geusic J E.Phys Rev, 1971; 3B: 2698
[32] Vetrone F, Boyer J C, Capobianco J A, Speghini A, Bettinelli M.J Appl Phys, 2004; 96: 661
[33] Sun H T, Xu S Q, Dai S X, Zhang J J, Hu L L, Jiang Z H.Solid State Commun, 2004; 132: 193
[34] Sun H T, Yu C L, Duan Z C, Wen L, Zhang J J, Hu L L, Dai S X.Opt Mater, 2006; 28: 448
[35] Gao F, Wu G H, Zhou H, Bao D H. J Appl Phys, 2009; 106: 12610
[1] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[2] ZHENG Xiaohang, NING Rui, DUAN Jiatong, CAI Wei. Martensitic Transformation and Damping Behavior of Ti70-xTa15Zr15Fex (x=0.3, 0.6, 1.0) Shape Memory Thin Films[J]. 金属学报, 2020, 56(12): 1690-1696.
[3] Dongyu HE,Yuxin LIU. PFM Study of the 90° Step-by-Step Domain Switching and the Temperature Effect in 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3 Ferroelectric Thin Film[J]. 金属学报, 2019, 55(3): 325-331.
[4] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[5] Xiaoqin MA, Qingfeng ZHAN, Jincai LI, Qingfang LIU, Baomin WANG, Runwei LI. Influence of Oblique Sputtering on Stripe Magnetic Domain Structure and Magnetic Anisotropy of CoFeB Thin Films[J]. 金属学报, 2018, 54(9): 1281-1288.
[6] Yachao SUN, Minggang ZHU, Rui HAN, Xiaoning SHI, Nengjun YU, Liwei SONG, Wei LI. Magnetic Viscosity of Anisotropic Rare Earth Permanent Films[J]. 金属学报, 2018, 54(3): 457-462.
[7] LI Xiaoyan. ATOMISTIC SIMULATIONS OF BAUSCHINGER EFFECT IN NANOCRYSTALLINE ALUMINUM THIN FILMS[J]. 金属学报, 2014, 50(2): 219-225.
[8] YU Lihua, MA Bingyang, XU Junhua. INFLUENCE OF C CONTENT ON STRUCTURE AND MECHANICAL PROPERTIES OF ZrCN COMPOSITE FILMS[J]. 金属学报, 2012, 48(4): 469-474.
[9] TANG Ruihe YANG Zhigang ZHANG Chi YANG Bai LIU Xiaofang YU Ronghai. MICROSTRUCTURE, MAGNETIC AND MAGNETOTRANSPORT PROPERTIES OF Co-C NANOCOMPOSITE THIN FILMS[J]. 金属学报, 2011, 47(4): 469-474.
[10] LI Zhuguo MIYAKE Shoji. STRUCTURE AND OPTICAL PROPERTIES OF HIGH-RATE LOW-TEMPERATURE GROWN TiO2 THIN FILMS BY REACTIVE MAGNETRON SPUTTERING[J]. 金属学报, 2010, 46(1): 13-18.
[11] ZHANG Bingsen LI Maolin WANG Jingjing SUN Benzhe QI Yang . FABRICATION AND CRYSTALLINITY OF Bi2Sr2CaCu2O8+δ THIN FILMS BY MOLECULAR BEAM EPITAXY[J]. 金属学报, 2009, 45(6): 663-672.
[12] ;. THE APPLICATION OF HIGH-CONCENTRATION OZONE IN THE PREPARATION OF BI-BASED OXIDE THIN FILMS BY MOLECULAR BEAM EPITAXY[J]. 金属学报, 2008, 44(6): 647-651 .
[13] ZHANG Yao; Chi-Yuen CHUNG. PITT investigation of apparent diffusion of lithium-ion through PLD-deposited HT-LiCoO2 films[J]. 金属学报, 2007, 43(8): 818-822 .
[14] FU Engang; ZHUANG Daming; ZHANG Gong. Infrared properties and mechanism of Al-doped ZnO thin films[J]. 金属学报, 2005, 41(3): 333-336 .
[15] ZHANG Guangping; WANG Zhongguang. Progress in Fatigue of Small Dimensional Materials[J]. 金属学报, 2005, 41(1): 1-8 .
No Suggested Reading articles found!