Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (5): 573-577    DOI: 10.3724/SP.J.1037.2010.00715
论文 Current Issue | Archive | Adv Search |
FIRST-PRINCIPLES STUDY OF STACKING FAULT ENERGY AND DEFORMATION TWIN\par ENERGY IN Al-Mg ALLOYS
DONG Minghui, HAN Peide, ZHANG Caili, YANG Yanqing, ZHANG Lili, LI Hongfei
1) College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024
2) Key Laboratory of Interface Science and Engineering in Advanced Materials of Taiyuai University of Technology, Ministry of Education, Taiyuan 030024
Cite this article: 

DONG Minghui HAN Peide ZHANG Caili YANG Yanqing ZHANG Lili LI Hongfei. FIRST-PRINCIPLES STUDY OF STACKING FAULT ENERGY AND DEFORMATION TWIN\par ENERGY IN Al-Mg ALLOYS. Acta Metall Sin, 2011, 47(5): 573-577.

Download:  PDF(869KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By using first--principles method based on the density functional theory (DFT), the stacking fault energy (SFE) and deformation twin energy (DTE) for the (111)[112] slip system of pure Al metal and Al-Mg alloys were investigated. The dependence of these SFE and DTE on solid--solution Mg content and its accupation were specifically analyzed. Two major approximations were made in the process of calculation, which were local density approximation (LDA) and generalized gradient approximation (GGA-PW91), respectively. The calculated SFE values by using GGA-PW91 exhibit an excellent agreement with corresponding experimental measurements. For pure Al metal, the calculated SFE values are greater than those of DTE. Moreover, it is found that under the same deformation conditions, the DTE in pure Al and Al-Mg alloys increase monotonically with the increase of deformation twin thickness. In addition, the calculated results shows that 6-layer twin possesses the lowest DTE, which is probably due to its mirror symmetry structure. Also noteworthy, our calculations reveal a noticeable decreased tendency of SFE and DTE with Mg content increasing, while Mg occupying on stacking fault and twin boundary most likely increases SFE and DTE. There are no considerably detected effects of Mg atomic occupancy variation in Al-Mg alloy on its cohesive energy and formation energy.
Key words:  first-principles      stacking fault energy      twin      Al-Mg alloy     
Received:  15 October 2010     
ZTFLH: 

TG111.2

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50874079 and 51002102), Taiyuan Science and Technology Project (No.100115105) and Education Department of Shanxi Province (No.20080010)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00715     OR     https://www.ams.org.cn/EN/Y2011/V47/I5/573

[1] Fanourgakis G S, Pontikis V, Zerah G. Phys Rev, 2003; 67B: 094102

[2] Gang L, Kioussis N, Bulatov V V, Kaxiras E. Phys Rev, 2000; 62B: 3099

[3] Rester M, Motz C, Pippan R. Scr Mater, 2008; 58: 187

[4] Zhu Y T, Narayan J, Hirth J P, Mahajan S, Wu X L, Liao X Z. Acta Mater, 2009; 57: 3763

[5] Zhao Y H, Zhu Y T, Liao X Z, Horita Z, Langdon T G. Appl Phys Lett, 2006; 89: 121906

[6] Yamakov V, Wolf D, Phillpot S R. Acta Mater, 2002; 50: 5005

[7] Hai S, Tadmor E B. Acta Mater, 2003; 51: 117

[8] Chen M W, Ma E, Hemker K J, Sheng H W, Wang Y M, Cheng X M. Science, 2003; 300: 1275

[9] Liu M, Roven H J, Murashkin M, Valiev R Z. Mater Sci Forum, 2008; 579: 147

[10] Zhang J M, Xie L J, Xu K W. Acta Metall Sin, 2007; 43: 182

(张建民, 解丽娟, 徐可为. 金属学报, 2007; 43: 182)

[11] Wu X Z, Wang R, Wang S F, Wei Q Y. Appl Surf Sci, 2010; 256: 6345

[12] Wu J, Wen L, Tang B Y, Peng L M, Ding W J. Solid State Sci, 2011; 13: 120

[13] Heino P, Perondi L, Kaski K, Ristolainen E. Phys Rev, 1999; 60B: 14625

[14] Schulthess T C, Turchi P E A, Gonis A, Nieh T G. Acta Mater, 1998; 46: 2215

[15] Kohn W, Sham L. Phys Rev, 1965; 140: A1133

[16] Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V, Nobes R H. Int J Quant Chem, 2000; 77: 895

[17] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C. J Phys, 2002; 14: 2717

[18] Mattsson A E, Schultz P A, Desjarlais M P, Mattsson T R, Leung K. Model Simul Mater Sci Eng, 2005; 13: R1

[19] Payne M C, Teter M P, Allan D C, Arials T A, Joannopoulos J D. Rev Mod Phys, 1992; 64: 1045

[20] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Perderson M R, Singh D J, Fiolhais C. Phys Rev, 1992; 46B: 6671

[21] Meyer R, Lewis L J. Phys Rev, 2002; 66B: 052106

[22] Hirth J P, Lothe J. Theory of Dislocations. 2nd Ed., New York: Wiley, 1982: 839

[23] Baskes M I. Phys Rev, 1992; 46B: 2727

[24] Ogata S, Li J, Yip S. Science, 2002; 298: 807

[25] Hartford J, Von Sydow B, Wahnstr¨om G, Lundqvist B I. Phys Rev, 1998; 58B: 2487

[26] Wang Y F, Zhang W B, Wang Z Z, Deng Y H, Yu N, Tang B Y, Zeng X Q, Ding W J. Comput Mater Sci, 2007; 41: 78

[27] Zhang C L, Han P D, Yan X, Wang C, Xia L Q, Xu B S. J Phys, 2009; 42D: 125403

[28] Mola R, Dziado´n A. Arch Foundry Eng, 2008; 8: 127
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[4] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[5] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[6] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[7] GAO Dong, ZHOU Yu, YU Ze, SANG Baoguang. Selection of Twin Variants in Dynamic Plastic Deformation of Pure Ti at Liquid Nitrogen Temperature[J]. 金属学报, 2022, 58(9): 1141-1149.
[8] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[9] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[10] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[11] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[12] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[13] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[14] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[15] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
No Suggested Reading articles found!