Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (2): 325-338    DOI: 10.11900/0412.1961.2017.00459
Orginal Article Current Issue | Archive | Adv Search |
First-Principles Study of Hydrogen Behaviors at Oxide/Ferrite Interface in ODS Steels
Yuchao FENG1,2, Weiwei XING3, Shoulong WANG1,2, Xingqiu CHEN1(), Dianzhong LI1, Yiyi LI1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Yuchao FENG, Weiwei XING, Shoulong WANG, Xingqiu CHEN, Dianzhong LI, Yiyi LI. First-Principles Study of Hydrogen Behaviors at Oxide/Ferrite Interface in ODS Steels. Acta Metall Sin, 2018, 54(2): 325-338.

Download:  HTML  PDF(8124KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ferritic oxide dispersion strengthened (ODS) steels, which usually contain a very high density of nano-sized Y-Ti-O particles and oxide precipitates (Y2Ti2O7 or/and Y2TiO5), have been demonstrated to be a leading candidate for promising structural materials in advanced fission and fusion energy applications. By means of first-principles calculations, the defect formation energies and preference sites of hydrogen (H) and helium (He) atoms trapped in Y2Ti2O7, Y2TiO5 and Y2Ti2O7/bcc-Fe interface, were investigated. The calculations uncover that (1) H atoms prefer to occupy the interstitial sites with high pre-exsiting charge densities of Y2Ti2O7 and Y2TiO5, (2) the Y2Ti2O7/bcc-Fe interface trends to attract vacancies in bcc-Fe matrix because of its lower vacancy formation energies, (3) at the Y2Ti2O7/bcc-Fe interface, H at om prefers to occupy the interstitial sites around the bcc-Fe side while He atom prefers to occupy the interstitial sites around Y2Ti2O7 side. All these results demonstrate that both H and He atoms produced by nuclear transmutation reactions would be trapped by oxides precipitates and Y2Ti2O7/bcc-Fe interface in case of the formation of large bubbles. This implies that high density of nanometer-sized oxide precipitates and Y2Ti2O7/bcc-Fe interfaces in ODS steels effectively disperse H atoms and inhibit H clusters in finer size. Besides that, during the growth process of the finer H clusters at interfaces they trap a large number of both H atoms and vacancies, acting as self-healing sites for irradiation damage. These facts potentially corresponds to the excellent capability of ODS steels to resist irradiation damage. Moreover, the calculation results may also interpret the synergistic effect of irradiation damage produced by both H and He to ODS steels.

Key words:  ODS steel      Y2Ti2O7/bcc-Fe interface      hydrogen      first-principles calculation     
Received:  01 November 2017     
Fund: Supported by National Natural Science Foundation of China (No.51474202)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00459     OR     https://www.ams.org.cn/EN/Y2018/V54/I2/325

Fig.1  Crystal structures of Y2Ti2O7 (a) and Y2TiO5 (b)
Method a / nm B / GPa
PAW-PBE 0.283 188
Calculated 0.276~0.287[48,49,50,51,52,53,54,55,56,57] 169~182[53~55,58~60]
Experimental 0.287[61] 168[62]
Table 1  Lattice constant a and bulk modulus B of bcc-Fe
Method a / nm B / GPa
PAW-PBE 1.019 182
Calculated 1.000, 1.017, 209, 183,
1.020[63], 1.011[64] 181[63], 193[64]
Experimental 1.009~1.010[65,66,67] 170, 190, 192[68]
Table 2  Lattice constant a and B of Y2Ti2O7
Method Lattice constant / nm B / GPa
a b c
PAW-PBE 1.045 0.372 1.135 149
Calculated[63] 1.046 0.373 1.137 128
Experimental[69] 1.035 0.370 1.125 -
Table 3  Lattice constants a, b, c and B of Y2TiO5
Fig.2  Octahedron (octa.) and tetrahedron (tetr.) interstitial sites in Y2Ti2O7 (a) and polyhedron interstitial sites A, B and channel interstitial site C in Y2TiO5 (b)
Fig.3  Formation energies of the hydrogen clusters in Y2TiO5 (a) and Y2Ti2O7 (b)
Fig.4  Contour plots of the electron location functions (ELFs) for hydrogen in Y2TiO5 interstitial sites
(a) (001) plane of H in A site(b) (010) plane of 2H site(c) (100) plane of H in B site(d) (100) plane of 2H in B site(e) (001) plane of H in C site(f) (100) plane of 2H in C site
Fig.5  Contour plots of ELFs for hydrogen in Y2Ti2O7 interstitial sites
(a) (010) plane of H in octa.(b) (001) plane of 2H in octa.(c) (110) plane of H in tetr.(d) (110) plane of 2H in tetr.
Fig.6  Interface between the matrix and the Y2Ti2O7 particles for the first-principles calculations
Fig.7  Two representative coordination types of bcc-Fe(100)/Y2Ti2O7(100) interface: Y/Ti-bridge (a) and Y/Ti-top (b), and changes of total energy of interface structure with distance (c)
Fig.8  Final interface structure for the calculations (a) and the top-view of interfacial atoms for Y/Ti-bridge (b)
Fig.9  Interstitial sites for hydrogen on the Y/Ti-rich interface and corresponding top views of interfacial layers
\((a)H^s_A\ \ (b)H^s_B\ \ (c)H^i_A\ \ (d)H^B_A\ \ (e)H^i_T\ \ (f)H^i_V \ \ \)
Fig.10  Formation energies of a single hydrogen atom in Y2TiO5, Y2Ti2O7, bcc-Fe, bcc-Fe/Y2Ti2O7 interface
Fig.11  Contour plots of ELFs for the selected planes and corresponding 3D ELFs isosurface (with an isovalue of 0.6) of interface are shown at the top
\((a)H^i_A \ \ (b)H^i_B \ \ (c)H^s_A \ \ (d)H^s_B \ \ (e)H^i_T \ \ (f)H^i_V \ \ (g) V\)
Fig.12  Density of states (DOSs) of the hydrogen atoms with neighbour atoms in different interstitial sites
\((a)H^i_A \ \ (b)H^i_B \ \ (c)H^s_A \ \ (d)H^s_B \ \ (e)H^i_T \ \ (f)H^i_V \ \\)
Fig.13  Interstitial sites for hydrogen and helium clusters on the Y/Ti-rich interface
\((a)H^i_A+He^i_A \ \ (b)H^i_B+He^i_B \ \ (c)H^i_T+He^i_T \ \ (d)H^i_V+He^i \\ (e)H^i_A+He^s_A \ \ (f)H^i_A+He^s_B \ \ (g)H^i_B+He^s_A \ \ (h)H^i_B+He^s_B \ \ \)
Fig.14  Formation energies of a single helium atom, hydrogen-helium clusters, a single hydrogen atom at bcc-Fe/Y2Ti2O7 interface
Fig.15  Schematic of Y2Ti2O7/bcc-Fe interface trapping He and H
[1] Odette G R, Alinger M J, Wirth B D.Recent developments in irradiation-resistant steels[J]. Ann. Rev. Mater. Res., 2008, 38: 471
[2] Grossbeck M L, Ehrlich K, Wassilew C.An assessment of tensile, irradiation creep, creep rupture, and fatigue behavior in austenitic stainless steels with emphasis on spectral effects[J]. J. Nucl. Mater., 1990, 174: 264
[3] Lee J S, Kimura A, Ukai S, et al.Effects of hydrogen on the mechanical properties of dispersion strengthenening steels[J]. J. Nucl. Mater., 2004, 329: 1122
[4] Beghini M, Benamati G, Bertiny L, et al. Effect of hydrogen on tensile properties of martenistic steels for fusion application [J]. J. Nucl. Mater., 1998, 258-263: 1295
[5] Kimura Y, Sakai Y, Hara T, et al.Hydrogen induced delayed fracture of ultrafine grained 0.6% O steel with dispersed oxide particles[J]. Scr. Mater., 2003, 49: 1111
[6] Yagodzinskyy Y, Malitckii E, Ganchenkova M, et al.Hydrogen effects on tensile properties of EUROFER 97 and ODS-EUROFER steels[J]. J. Nucl. Mater., 2014, 444: 435
[7] Sakasegawa H, Chaffron L, Legendre F, et al.Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy[J]. J. Nucl. Mater., 2009, 387: 115
[8] Sakasegawa H, Legendre F, Boulanger L, et al.Stability of non-stoichiometric clusters in the MA957 ODS ferritic alloy[J]. J. Nucl. Mater., 2011, 417: 229
[9] Miller M K, Kenik E A, Russell K F, et al.Atom probe tomography of nanoscale prticles in ODS ferritic alloys[J]. Mater. Sci. Eng., 2003, A353: 140
[10] Miller M K, Hoelzer D T, Kenik E A, et al.Stability of ferritic MA/ODS alloys at high temperatures[J]. Intermetallics, 2005, 13: 387
[11] Miller M K, Hoelzer D T, Kenik E A, et al. Nanometer scale precipitation in ferritic MA/ODS alloy MA957 [J]. J. Nucl. Mater., 2004, 329-333: 338
[12] Miller M K, Russell K F, Hoelzer D T.Characterization of precipitates in MA/ODS ferritic alloys[J]. J. Nucl. Mater., 2006, 351: 261
[13] Hirata A, Fujita T, Wen Y R, et al.Atomic structure of nanoclusters in oxide-dispersion-strengthened steels[J]. Nat. Mater., 2011, 10: 922
[14] Klimenkov M, Lindau R, M?slang A.New insights into the structure of ODS particles in the ODS-Eurofer alloy[J]. J. Nucl. Mater., 2009, 386: 553
[15] Ohtsuka S, Ukai S, Fujiwara M, et al. Improvement of 9Cr-ODS martensitic steel properties by controlling excess oxygen and titanium contents [J]. J. Nucl. Mater., 2004, 329-333: 372
[16] Chauhan A, Stra?berger L, Führer U, et al.Creep-fatigue interaction in a bimodal 12Cr-ODS steel[J]. Int. J. Fatigue, 2017, 102: 92
[17] Ukai S, Okuda T, Fujiwara M, et al.Characterization of high temperature creep properties in recrystallized 12Cr-ODS ferritic steel claddings[J]. J. Nucl. Sci. Technol., 2002, 39: 872
[18] Okuda T, Fujiwara M.Dispersion behavior of oxide particles in mechanically alloyed ODS steel[J]. J. Mater. Sci. Lett., 1995, 14: 1600
[19] Demkowicz M J, Bellon P, Wirth B D.Atomic-scale design of radiation-tolerant nanocomposites[J]. MRS Bull., 2010, 35: 992
[20] Larson D J, Maziasz P J, Kim I S, et al.Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti-Y2O3 ferritic alloy[J]. Scr. Mater., 2001, 44: 359
[21] Kim I S, Hunn J D, Larson D L, et al.Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe+ ion irradiation with simulataneous helium infection[J]. J. Nucl. Mater., 2000, 280: 264
[22] Klueh R L, Maziasz P J, Kim I S, et al. Tensile and creep properties of an oxide dispersion-strengthened ferritic steel [J]. J. Nucl. Mater., 2002, 307-311: 773
[23] Fu C L, Krcmar M, Painter G S, et al.Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe[J]. Phys. Rev. Lett., 2007, 99: 225502
[24] Miller M K, Fu C L, Krcmar M, et al.Vacancies as a constitutive element for the design of nanocluster-strengthened ferritic steels[J]. Front. Mater. Sci. China, 2009, 3: 9
[25] Xu J, Liu C T, Miller M K, et al.Nanocluter-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy[J]. Phys. Rev., 2009, 79B: 020204
[26] Miller M K, Parish C M.Role of alloying elements in nanostructured ferritic steels[J]. Mater. Sci. Technol., 2011, 27: 729
[27] Miller M K, Parish C M, Li Q.Advanced oxide dispersion strengthened and nanostructured ferritic alloys[J]. Mater. Sci. Technol., 2013, 29: 1174
[28] Brocq M, Radiguet B, Le Breton J M, et al. Nanoscale characterisation and clustering mechanism in an Fe-Y2O3 model ODS alloy processed by reactive ball milling and annealing[J]. Acta Mater., 2010, 58: 1806
[29] Hirata A, Fujita T, Liu C T, et al.Characterization of oxide nanoprecipitates in an oxide dispersion strengthened 14YWT steel using aberration-corrected STEM[J]. Acta Mater., 2012, 60: 5686
[30] Laurent-Brocq M, Legendre F, Mathon M H, et al.Influence of ball-milling and annealing conditions on nanocluster characteristics in oxide dispersion strengthened steels[J]. Acta Mater., 2012, 60: 7150
[31] Pasebani S, Charit I, Wu Y Q, et al.Mechanical alloying of lanthana-bering nanostructured ferritic steels[J]. Acta Mater., 2013, 61: 5605
[32] Kim J H, Park C H.Effect of milling temperature on nanoclusters and ultra fine grained microstructure of oxide dispersion strengthened steel[J]. J. Alloys. Compd., 2013, 585: 69
[33] Pressouyre G M, Dollet J, Vieillard-Baron B.Development of knowledge about the embrittlement of steels by hydrogen[J]. Mem. Etud. Sci. Rev. Met., 1982, 79: 161
[34] Maroef I, Olson D L, Eberhart M, et al.Hydrogen trapping in ferritic steel weld metal[J]. Int. Mater. Rev., 2002, 47: 191
[35] Oriani R A.Whitney award lecture-1987: Hydrogen-the versatile embrittler[J]. Corrosion, 1987, 43: 390
[36] Kuron D.Wasserstoff und Korrosion[M]. German: Verlag Irene Kuron, 2000: 63
[37] Xing W W, Chen X Q, Liu P T, et al.First principles studies of hydrogen behavior interacting with oxygen-enriched nanostructured particles in the ODS steels[J]. Int. J. Hydrogen Energ., 2014, 39: 18506
[38] Xing W W, Chen X Q, Qing X, et al.Unified mechanism for hydrogen trapping at metal vacancies[J]. Int. J. Hydrogen Energ., 2014, 39: 11321
[39] Ault J D, Welch A J E. The yttrium oxide-titanium system[J]. Acta Crystallogr., 1966, 20: 410
[40] Mumme W G, Wadsley A D.The structure of orthorhombic Y2TiO5, an example of mixed seven- and fivefold coordination[J]. Acta Crystallogr., 1968, 24B: 1327
[41] Kresse G, Hafner J.Ab initio molecular dynamics for liquid metals[J]. Phys. Rev., 1993, 47B: 558
[42] Kresse G, Hafner J.Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium[J]. Phys. Rev., 1994, 49B: 14251
[43] Kresse G, Furthmüeller J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set[J]. Comput. Mater. Sci., 1996, 6: 15
[44] Bl?hl P E.Projector augmented-wave method[J]. Phys. Rev., 1994, 50B: 17953
[45] Kresse G, Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev., 1999, 59B: 1758
[46] Perdew J P, Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev., 1992, 45B: 13244
[47] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
[48] Moroni E G, Kresse G, Hafner J, et al.Ultrasoft pseudopotentials applied to magnetic Fe, Co, and Ni: From atoms to solids[J]. Phys. Rev., 1997, 56B: 15629
[49] ?ák M, ?ob M, Hafner J.First-principles study of magnetism at grain boundaries in iron and nickel[J]. Phys. Rev., 2008, 78B: 054418
[50] Jiang D E, Carter E A.Diffusion of interstitial hydrogen into and through bcc Fe from first principles[J]. Phys. Rev., 2004, 70B: 064102
[51] Tateyama Y, Ohno T.Stability and clusterization of hydrogen-vacancy complexes in α-Fe: An ab initio study[J]. Phys. Rev., 2003, 67B: 174105
[52] Ackland G J, Bacon D J, Calder A F, et al.Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential[J]. Philos. Mag., 1997, 75A: 713
[53] Mendelev M I, Han S, Srolovitz D J, et al.Development of new interatomic potentials appropriate for crystalline and liquid iron[J]. Philos. Mag., 2003, 83: 3977
[54] Simonelli G, Pasianot R, Savino E.Embedded-Atom-Method Interatomic Potentials for bcc-Iron. MRS Proceedings [M]. London: Cambridge Univ. Press, 1992: 567
[55] Dudarev S L, Derlet P M.A 'magnetic' interatomic potential for molecular dynamics simulations[J]. J. Phys. Condens. Matter, 2005, 17: 7097
[56] Müller M, Erhart P, Albe K.Analytic bond-order potential for bcc and fcc iron—Comparison with established embedded-atom method potentials[J]. J. Phys. Condens. Matter, 2007, 19: 326220
[57] Hung A, Yarovsky I, Muscat J, et al.First-principles study of metallic iron interfaces[J]. Surf. Sci., 2002, 501: 261
[58] Leung T C, Chan C T, Harmon B N.Ground-state properties of Fe, Co, Ni, and their monoxides: Results of the generalized gradient approximation[J]. Phys. Rev., 1991, 44B: 2923
[59] Singh D J, Pickett W E, Krakauer H.Gradient-corrected density functionals: Full-potential calculations for iron[J]. Phys. Rev., 1991, 43B: 11628
[60] Cho J H, Scheffler M.Ab initio pseudopotential study of Fe, Co, and Ni employing the spin-polarized LAPW approach[J]. Phys. Rev., 1996, 53B: 10685
[61] Wyckoff R W G, Wyckoff R W. Crystal Structures[M]. New York: Interscience, 1960: 141
[62] Kittel C.Introduction to Solid State[M]. 7th Ed., Hoboken: John Wiley & Sons, Inc., 1966: 97
[63] Jiang Y, Smith J R, Odette G.Formation of Y-Ti-O nanoclusters in nanostructured ferritic alloys: A first-principles study[J]. Phys. Rev., 2009, 79B: 064103
[64] Terki R, Bertrand G, Aourag H, et al.Ab initio calculations of structural and electronic properties of Y2Ti2O7 and Cd2Nb2O7[J]. Physica: Conden. Matter, 2007, 392B: 341
[65] Subramanian M A, Aravamudan G, Rao G V S. Oxide pyrochlores—A review[J]. Prog. Solid State Chem., 1983, 15: 55
[66] Glerup M, Nielsen O F, Poulsen F W.The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistry modeling[J]. J. Solid State Chem., 2001, 160: 25
[67] Haile S M, Wuensch B J, Prince E.Neutron Rietveld Analysis of Anion and Cation Disorder in the Fast-Ion Conducting Pyrochlore System Y2(ZrxTi1-x)2O7 [M]. Lodon: Cambridge Univ. Press, 1989: 81
[68] He L F, Shirahata J, Nakayama T, et al.Mechanical properties of Y2Ti2O7[J]. Scr. Mater., 2011, 64: 548
[69] Mumme W G, Wadsley A D.The structure of orthorhombic Y2TiO5, an example of mixed seven-and fivefold coordination[J]. Acta Crystall.,. 1968, 24B: 1327
[70] Liu Y L, Zhang Y L, Zhou H B, et al.Vacancy trapping mechanism for hydrogen formation in metal[J]. Phys. Rev., 2009, 79B: 172103
[71] Ribis J, De Carlan Y.Interfacial strained structure and orientation relationships of the nanosized oxide particles deduced from elasticity-driven morphology in oxide dispersion strengthened materials[J]. Acta Mater., 2012, 60: 238
[72] He J Q, Girard S N, Kanatzidis M G, et al.Microstructure-lattice thermal conductivity correlation in nanostructured PbTe0.7S0.3 thermoelectric materials[J]. Adv. Funct. Mater., 2012, 20: 764
[73] Smith J R, Jiang Y, Evans A G.Adhesion of the γ-Ni (Al)/α-Al2O3 interface: A first-principles assessment[J]. Int. J. Mater. Res., 2007, 98: 1214
[74] Jiang Y, Smith J R, Evans A G.First principles assessment of metal/oxide interface adhesion[J]. Appl. Phys. Lett., 2008, 92: 141918
[75] Yang L T, Jiang Y, Odette G R, et al.Nonstoichiometry and relative stabilities of Y2Ti2O7 polar surfaces: A density functional theory prediction[J]. Acta Mater., 2013, 61: 7260
[76] Yang L T, Jiang Y, Wu Y, et al.The ferrite/oxide interface and helium management in nano-structured ferritic alloys from the first principles[J]. Acta Mater., 2016, 103: 474
[77] Tanaka T, Oka K, Ohnuki S, et al. Synergistic effect of helium and hydrogen for defect evolution under multi-ion irradiation of Fe-Cr ferritic alloys [J]. J. Nucl. Mater., 2014, 329-333: 294
[78] Tang X Z, Guo Y F, Fan Y, et al.Interstitial emission at grain boundary in nanolayered alpha-Fe[J]. Acta Mater., 2016, 105: 147
[79] Bai X M, Uberuaga B P.The influence of grain boundaries on radiation-induced point defect production in materials: A review of atomistic studies[J]. JOM, 2013, 65: 360
[80] Bai X M, Voter A F, Hoagland R G, et al.Efficient annealing of radiation damage near grain boundaries via interstitial emission[J]. Science, 2010, 327: 1631
[81] Ackland G.Controlling radiation damage[J]. Science, 2010, 327: 1587
[1] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[2] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[3] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[4] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[5] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[6] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[7] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[8] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[9] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[10] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[11] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[12] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[13] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[14] PENG Yanyan, YU Liming, LIU Yongchang, MA Zongqing, LIU Chenxi, LI Chong, LI Huijun. Effect of Ageing Treatment at 650 ℃ on Microstructure and Properties of 9Cr-ODS Steel[J]. 金属学报, 2020, 56(8): 1075-1083.
[15] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
No Suggested Reading articles found!