Please wait a minute...
Acta Metall Sin    DOI: 10.3724/SP.J.1037.2013.00266
Current Issue | Archive | Adv Search |
FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY
MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
Download:  PDF(1516KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electronic structure and elastic properties of Mg2Sn, Mg2Ca and MgZn2 phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory (DFT). The calculated lattice parameters were in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Mg2Sn has the strongest alloying ability and structural stability. The density of states (DOS) of Mg2Sn, Mg2Ca and MgZn2 phases were calculated to analyze the mechanism of structural stability and mechanical properties. The calculated band structures show that Mg2Sn phase has the widest bandgap. The electron density difference indicate that bonding characteristics of Mg2Sn, Mg2Ca and MgZn2 phases were all covalent bond, ionic bond and metallic bond. The elastic constants of Mg2Sn, Mg2Ca and MgZn2 phases are calculated, the bulk moduli, shear moduli, Young's moduli and Poisson's ratio are then derived. Bulk moduli is assumed to be the ability of material resistance to volume change by applied stress, the larger bulk modulus of MgZn2 phase shows that it has stronger ability to resist deformation. Shear moduli is a measure of resistance to shear strain deformation under the deformation condition of shear stress, the larger shear moduli value of Mg2Sn phase indicates that it has the stronger ability to resist shear strain deformation. The calculated Poisson's ration shows that MgZn2 has the largest value, and then followed by Mg2Ca and Mg2Sn. Hence, the plasticity of MgZn2 phase is the best. The calculated Young's moduli of Mg2Sn phase has the largest value and MgZn2 phase has the smallest value. Hence, among the three phases Mg2Sn phase has the strongest stiffness. The ratio of the shear moduli to bulk moduli of phase can be used to demonstrate the brittle and ductile of materials. The critical value, which separates ductility from brittleness, is about 0.57. A higher G/Bu value is associated withbrittleness, otherwise is ductility. The calculated values of Mg2Sn, Mg2Ca and MgZn2 phases are 0.66, 0.53 and 0.18, respectively. The results show that Mg2Sn is brittle, Mg2Ca and MgZn2 are both ductile.

Key words:  magnesium alloy      first-principles calculation      structural stability      electronic structure      elastic property     
Received:  13 May 2013     

Cite this article: 

MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY. Acta Metall Sin, 2013, 49(10): 1227-1233.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00266     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1227

[1] Yang H Y, Guo X W, Wu G H, Wang S H, Ding W J. Surf Coat Technol, 2011; 205: 2907

[2] Liu Z, Zhang K, Zeng X Q. Magnesium-Based Light-Alloy Theoretical Basis and the Application.Beijing: Mechanical Industry Press, 2002: 1
(刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用. 北京: 机械工业出版社, 2002: 1)
[3] Song W, Wu Z G, He Y H, Huang B Y. Chin J Nonferrous Met, 2008; 18: 1971
(宋旼, 吴正刚, 贺跃辉, 黄伯云. 中国有色金属学报, 2008; 18: 1971)
[4] Zhou D W, Xu S H, Zhang F Q, Peng P, Liu J S. Acta Metall Sin, 2010; 46: 97
(周惦武, 徐少华, 张福全, 彭平, 刘金水. 金属学报, 2010; 46: 97)
[5] ЛякишевH П, translated by Guo Q W. Metal Binary System Manual. Beijing: Chemical Industry Press,2009: 914
(梁基谢夫 著, 郭青蔚译. 金属二元系相图手册. 北京:化学工业出版社, 2009: 914)
[6] Gao X, Nie J F. Scr Mater, 2007; 57: 655
[7] Zeng X Q, Zhang Y, Lu C, Ding W J, Wang Y X, Zhu Y P. J Alloys Compd, 2005; 395: 213
[8] Qin B, Yu W B, Li F P, Li C M. Foundry, 2010; 59: 886
(秦兵, 于文斌, 李坊平, 李春梅. 铸造, 2010; 59: 886)
[9] Li S H, Zhang C X, Guan S K, Wen C L, Tian H T, Yu W W, Meng H. J Mater Sci Eng, 2012; 30: 563
(李少华, 张春香, 关绍康, 文春领, 田海棠, 于雯雯, 孟辉. 材料科学与工程学报, 2012; 30: 563)
[10] Zhang B P, Wang Y, Geng L, Lu C X. Mater Sci Eng, 2012; A39: 56
[11] Tong L B, Zheng M Y, Hua X S, Wu K, Xu S W, Kamado S, Kojima Y. Mater Sci Eng, 2010; A527: 4250
[12] Geng L, Zhang B P, Li A B, Dong C C. Mater Lett, 2009; 63: 557
[13] Cheng L. Master Thesis, Chongqing University of technlolgy, 2011
(程亮. 重庆理工大学硕士学位论文, 2011)
[14] Xiang Q, Wu R Z, Zhang M L. J Alloys Compd, 2009; 477: 832
[15] Nayyeri G, Mahmudi R, Salehi F. Mater Sci Eng, 2010; A527: 5353
[16] Pan X Q, Chen J H, Yan H G, Su B, Wei J Y, Fan C. Mater Sci Technol, 2013; 29: 169
[17] Wang P, Li J P, Guo Y C, Yang Z, Xia F, Wang J L. Rare Met Mater Eng, 2012; 41: 2095
(王萍, 李建平, 郭永春, 杨忠, 夏峰, 王建利. 稀有金属材料与工程, 2012; 41: 2095)
[18] Liu Z, Zhang Y, Mao P L, Yang C H. Spec Cast Nonferrous Alloys, 2012; 32: 1000
(刘正, 张越, 毛萍莉, 杨春海. 特种铸造及有色合金, 2012; 32: 1000)
[19] Shi D M, Wen B, Melnik R, Yao S, Li T J. J Solid State Chem, 2009; 82: 2664
[20] Pack J D, Monkhors H J. Phys Rev, 1977; 16B: 1748
[21] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[22] Fagan S B, Mota R, Baierle R J, Paiva G, Da Silva A J R, Fazzio A. J Mol Struct, 2001; 539: 101
[23] Zhang H, Shang S L, Saal J E, Saengdeejing A, Wang Y, Chen L Q, Liu Z K. Intermetallics, 2009; 17: 878
[24] Groseh G H, Range K J. J Alloys Compd, 1996; 235: 250
[25] Suzuki A, Saddock N D, Jomes J W, Pollock T M. Acta Mater, 2005; 53: 2823
[26] Yu W Y. Master Thesis, Xiangtan University, 2009
(余伟阳. 湘潭大学硕士学位论文, 2009)
[27] Huang K. Solid State Physics. Beijing: Higher Education Press, 1985: 68
(黄昆. 固体物理学. 北京:高等教育出社, 1985: 68)
[28] Li C H, Hoe J L, Wu P. J Phys Chem Solids, 2003; 64: 201
[29] Sahu B R. Mater Sci Eng, 1997; B49: 74
[30] Lin W, Xu J H, Freeman A J. Phys Rev, 1992; 45B: 10863
[31] Huang Z W, Zhao Y H, Hou H, Han P D. Physica, 2012; 407B: 1075
[32] Yu W Y, Wang N, Xiao X B, Tang B Y, Peng L M, Ding W J. Solid State Sci, 2009; 11: 1400
[33] Nye J F. Physical Properties of Crystals. Oxford: Clarendon Press, 1964: 1
[34] Davis L C, Whitten W B, Danielson G C. J Phys Chem Solids, 1967; 28: 439
[35] Corkill J L, Cohen M L. Phys Rev, 1993; 48B: 17138
[36] Seidenkranz T, Hegenbarth E. Phys Status Solidi, 1976; 33A: 205
[37] Li Y F, Gao Y M, Xiao B, Min T, Fan Z J, Ma S Q, Xu L L. J Alloys Compd, 2010; 502: 28
[38] Hill R. Phys Soc Sect, 1952; 65A: 349
[39] Hong S, Fu C L. Intermetallics, 1999; 7: 5
[40] Pugh S F. Philos Mag, 1954; 45: 823
[41] Mattesini M, Ahuja R, Johansson B. Phys Rev, 2003; 68B: 184108
[42] Fu C L, Wang X D, Ye Y Y. Intermetallics, 1999; 7: 179
[1] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[2] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[3] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[4] HUANG Taiwen,LU Jing,XU Yao,WANG Dong,ZHANG Jian,ZHANG Jiachen,ZHANG Jun,LIU Lin. Effects of Rhenium and Tantalum on Microstructural Stability of Hot-Corrosion Resistant Single Crystal Superalloys Aged at 900 ℃[J]. 金属学报, 2019, 55(11): 1427-1436.
[5] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[6] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[7] Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. 金属学报, 2018, 54(6): 935-942.
[8] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[9] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[10] Yuchao FENG, Weiwei XING, Shoulong WANG, Xingqiu CHEN, Dianzhong LI, Yiyi LI. First-Principles Study of Hydrogen Behaviors at Oxide/Ferrite Interface in ODS Steels[J]. 金属学报, 2018, 54(2): 325-338.
[11] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
[12] Guangming XIE, Zongyi MA, Peng XUE, Zongan LUO, Guodong WANG. Effects of Tool Rotation Rates on Superplastic Deformation Behavior of Friction Stir Processed Mg-Zn-Y-Zr Alloy[J]. 金属学报, 2018, 54(12): 1745-1755.
[13] Shujun CHEN, Xuan WANG, Tao YUAN, Xiaoxu LI. Research on Prediction Method of Liquation Cracking Susceptibility to Magnesium Alloy Welds[J]. 金属学报, 2018, 54(12): 1735-1744.
[14] Ronghua CUI, Xinyu WANG, Zhengchao DONG, Chonggui ZHONG. First Principles Study on Elastic and Thermodynamic Properties of Mg1-xZnx Alloys[J]. 金属学报, 2017, 53(9): 1133-1139.
[15] Bo WANG,Jun ZHANG,Xuejiao PAN,Taiwen HUANG,Lin LIU,Hengzhi FU. Effects of W on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2017, 53(3): 298-306.
No Suggested Reading articles found!