Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (10): 1185-1190    DOI: 10.3724/SP.J.1037.2013.00131
Current Issue | Archive | Adv Search |
SYNTHESIS AND PASSIVE PROPERTY OF NANOCOMPOSITE Ni-WC COATING
WU Zhanwen1,2), CHEN Ji1), PIAO Nan1), YANG Mingchuan3)
1) Center of Corrosion and Protection Technology in Petro-Chemical Industry,Department of Mechanical Engineering, Liaoning Shihua University, Fushun 113001
2) CNOOC Energy Technology and Services-Pipe Engineering Co., Tianjin 300452
3) Department of Modern Equipment Engineering, Shenyang Ligong University, Shenyang 110159
Cite this article: 

WU Zhanwen, CHEN Ji, PIAO Nan, YANG Mingchuan. SYNTHESIS AND PASSIVE PROPERTY OF NANOCOMPOSITE Ni-WC COATING. Acta Metall Sin, 2013, 49(10): 1185-1190.

Download:  PDF(1103KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The metallic matrix composite with ceramic nano-particles has a wide prospect in many applications due to its superior properties. The nanocomposite Ni-WC coating has been synthesized by using DC co-electrodeposition of Ni with WC nano-particles. Its hardness was measured by using ultra-micro hardness tester. Its corrosion and passive properties were investigated in 0.05 mol/L H3BO3+0.075 mol/L Na2B4O7 buffer solution with pH=9.0 by using potentiodynamic polarization measurement. As compared to pure nanocrystalline (nc) Ni, nanocomposite refined remarkably, with average grain size about 21 nm and the hardness increase of 80%, reaching about 651 HV. The corrosion current density icorr is 1.29×10-7 A/cm2,approximately one magnitude order lower than that of nc Ni. With the similar passive film breakdown potential, nanocomposite exhibits a lower passivation potential Ep of 10 mV and a much lower passive current density ip of1.79×10-6 A/cm2, about 1/7 that for nc Ni. According to the Mott-Schottky analysis together with point defect model, the passive film on the nanocomposite exhibits p-type semi-conducting behavior,similar to that on the nc Ni. The grain refinement of Ni is beneficial to the reduction of both the donor density and diffusion coefficient.

Key words:  Nanocomposite      Ni-WC      corrosion      passive film      hardness     
Received:  21 March 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00131     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1185

[1] Balog M, Keckes J, Schoberl T, Galusek D, Hofer F,Krst’n J, Lences Z, Huang J L, Sajgalik P.  J Eur Ceram Soc, 2007; 27: 2145

[2] Shen G X, Chen Y C, Lin L, Lin C J, Scantlebury D.  Electrochim Acta, 2005; 50: 5083
[3] Zhang H Y, Shan G B, Liu H Z, Xing J M.  Surf Coat Technol, 2007; 201: 6917
[4] Tang W, Lu W J, Luo X, Wang B S, Zhu X B, Song W H, Yang Z R, Sun Y P.  J Magn Magn Mater,2010; 322: 2360
[5] Bai S L, Chen L Y, Hu J W, Li D Q, Luo R X, Chen A F, Chung C L.  Sens Actuators,2011; 159B: 97
[6] Zhang S S, Han K J, Cheng L.  Surf Coat Technol, 2008; 202: 2807
[7] Wu B, Xu B S, Zhang B, L$\ddot{\rm u$ Y H.  Surf Coat Technol, 2007; 201: 6933
[8] Zhang M, Lin G Q, Dong C, Kim K H.  Curr Appl Phys, 2009; 9: S174
[9] Stroumbouli M, Gyftou P, Pavlatou E A, Spyrellis N.  Surf Coat Technol, 2005; 195: 325
[10] Gyftou P, Stroumbouli M, Pavlatou E A, Asimidis P, Spyrellis N.Electrochim Acta, 2005; 50: 4544
[11] Zhou X W, Shen Y F, Gu D D.  Acta Metall Sin, 2012; 48: 957
(周小卫, 沈以赴, 顾冬冬. 金属学报, 2012; 48: 957)
[12] Ye W, Li Y, Wang F H.  Electrochim Acta, 2006; 51: 4426
[13] Zheng Z J, Gao Y, Gui Y.  Corros Sci, 2012; 54: 60
[14] Han X, Chen J, Sun C, Wu Z W, Wu X C, Zhang X H.  Acta Metall Sin, 2013; 49: 265
(韩啸, 陈吉, 孙成, 武占文, 吴新春, 张星航. 金属学报, 2013; 49: 265)
[15] Meng G Z, Shao Y W, Zhang T, Zhang Y, Wang F H.  Electrochim Acta, 2008; 53: 5923
[16] Vignal V, Oltra R, Verneau M, Coudreuse L.  Mater Sci Eng, 2001; A303: 173
[17] Oliver W C, Pharr G M.  J Mater Res, 1992; 7: 1564
[18] Wu H, Chen T, Wang Q H.  J Mater Eng, 2011; 12: 48
(吴化, 陈涛, 王庆辉. 材料工程, 2011; 12: 48)
[19] El-Sherik A M, Erb U, Palumbo G, Aust K T.  Scr Mater, 1992; 27: 1185
[20] Chen X H, Chen C S, Xiao H N, Cheng F Q, Zhang G, Yi G J.  Surf Coat Technol, 2005; 191: 351
[21] Garrett C G B, Brattain W H.  Phys Rev, 1955; 99: 376
[22] Sun F L, Meng G Z, Zhang T, Shao Y W, Wang F H, Dong C F, Li X G.Electrochim Acta, 2009; 54: 1578
[23] Liu L, Li Y, Wang F H.  Electrochim Acta, 2008; 53: 2453
[24] Macdonald D D.  J Electrochem Soc, 1992; 139: 3434
[25] Macdonald D D, Macdonald M U.  J Electrochem Soc, 1990; 137: 2395
[26] Sikora E, Sikora J, Macdonald D D.  Electrochim Acta, 1996; 41: 783
[27] Li N, Li Y, Wang S G, Wang F H.  Electrochim Acta, 2006; 52: 760
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[3] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[4] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[5] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[6] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[7] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[8] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[9] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[10] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[11] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[12] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[13] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[14] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[15] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
No Suggested Reading articles found!