Please wait a minute...
Acta Metall Sin    DOI: 10.3724/SP.J.1037.2013.00131
Current Issue | Archive | Adv Search |
SYNTHESIS AND PASSIVE PROPERTY OF NANOCOMPOSITE Ni-WC COATING
WU Zhanwen1,2), CHEN Ji1), PIAO Nan1), YANG Mingchuan3)
1) Center of Corrosion and Protection Technology in Petro-Chemical Industry,Department of Mechanical Engineering, Liaoning Shihua University, Fushun 113001
2) CNOOC Energy Technology and Services-Pipe Engineering Co., Tianjin 300452
3) Department of Modern Equipment Engineering, Shenyang Ligong University, Shenyang 110159
Download:  PDF(1103KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The metallic matrix composite with ceramic nano-particles has a wide prospect in many applications due to its superior properties. The nanocomposite Ni-WC coating has been synthesized by using DC co-electrodeposition of Ni with WC nano-particles. Its hardness was measured by using ultra-micro hardness tester. Its corrosion and passive properties were investigated in 0.05 mol/L H3BO3+0.075 mol/L Na2B4O7 buffer solution with pH=9.0 by using potentiodynamic polarization measurement. As compared to pure nanocrystalline (nc) Ni, nanocomposite refined remarkably, with average grain size about 21 nm and the hardness increase of 80%, reaching about 651 HV. The corrosion current density icorr is 1.29×10-7 A/cm2,approximately one magnitude order lower than that of nc Ni. With the similar passive film breakdown potential, nanocomposite exhibits a lower passivation potential Ep of 10 mV and a much lower passive current density ip of1.79×10-6 A/cm2, about 1/7 that for nc Ni. According to the Mott-Schottky analysis together with point defect model, the passive film on the nanocomposite exhibits p-type semi-conducting behavior,similar to that on the nc Ni. The grain refinement of Ni is beneficial to the reduction of both the donor density and diffusion coefficient.

Key words:  Nanocomposite      Ni-WC      corrosion      passive film      hardness     
Received:  21 March 2013     

Cite this article: 

WU Zhanwen, CHEN Ji, PIAO Nan, YANG Mingchuan. SYNTHESIS AND PASSIVE PROPERTY OF NANOCOMPOSITE Ni-WC COATING. Acta Metall Sin, 2013, 49(10): 1185-1190.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00131     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1185

[1] Balog M, Keckes J, Schoberl T, Galusek D, Hofer F,Krst’n J, Lences Z, Huang J L, Sajgalik P.  J Eur Ceram Soc, 2007; 27: 2145

[2] Shen G X, Chen Y C, Lin L, Lin C J, Scantlebury D.  Electrochim Acta, 2005; 50: 5083
[3] Zhang H Y, Shan G B, Liu H Z, Xing J M.  Surf Coat Technol, 2007; 201: 6917
[4] Tang W, Lu W J, Luo X, Wang B S, Zhu X B, Song W H, Yang Z R, Sun Y P.  J Magn Magn Mater,2010; 322: 2360
[5] Bai S L, Chen L Y, Hu J W, Li D Q, Luo R X, Chen A F, Chung C L.  Sens Actuators,2011; 159B: 97
[6] Zhang S S, Han K J, Cheng L.  Surf Coat Technol, 2008; 202: 2807
[7] Wu B, Xu B S, Zhang B, L$\ddot{\rm u$ Y H.  Surf Coat Technol, 2007; 201: 6933
[8] Zhang M, Lin G Q, Dong C, Kim K H.  Curr Appl Phys, 2009; 9: S174
[9] Stroumbouli M, Gyftou P, Pavlatou E A, Spyrellis N.  Surf Coat Technol, 2005; 195: 325
[10] Gyftou P, Stroumbouli M, Pavlatou E A, Asimidis P, Spyrellis N.Electrochim Acta, 2005; 50: 4544
[11] Zhou X W, Shen Y F, Gu D D.  Acta Metall Sin, 2012; 48: 957
(周小卫, 沈以赴, 顾冬冬. 金属学报, 2012; 48: 957)
[12] Ye W, Li Y, Wang F H.  Electrochim Acta, 2006; 51: 4426
[13] Zheng Z J, Gao Y, Gui Y.  Corros Sci, 2012; 54: 60
[14] Han X, Chen J, Sun C, Wu Z W, Wu X C, Zhang X H.  Acta Metall Sin, 2013; 49: 265
(韩啸, 陈吉, 孙成, 武占文, 吴新春, 张星航. 金属学报, 2013; 49: 265)
[15] Meng G Z, Shao Y W, Zhang T, Zhang Y, Wang F H.  Electrochim Acta, 2008; 53: 5923
[16] Vignal V, Oltra R, Verneau M, Coudreuse L.  Mater Sci Eng, 2001; A303: 173
[17] Oliver W C, Pharr G M.  J Mater Res, 1992; 7: 1564
[18] Wu H, Chen T, Wang Q H.  J Mater Eng, 2011; 12: 48
(吴化, 陈涛, 王庆辉. 材料工程, 2011; 12: 48)
[19] El-Sherik A M, Erb U, Palumbo G, Aust K T.  Scr Mater, 1992; 27: 1185
[20] Chen X H, Chen C S, Xiao H N, Cheng F Q, Zhang G, Yi G J.  Surf Coat Technol, 2005; 191: 351
[21] Garrett C G B, Brattain W H.  Phys Rev, 1955; 99: 376
[22] Sun F L, Meng G Z, Zhang T, Shao Y W, Wang F H, Dong C F, Li X G.Electrochim Acta, 2009; 54: 1578
[23] Liu L, Li Y, Wang F H.  Electrochim Acta, 2008; 53: 2453
[24] Macdonald D D.  J Electrochem Soc, 1992; 139: 3434
[25] Macdonald D D, Macdonald M U.  J Electrochem Soc, 1990; 137: 2395
[26] Sikora E, Sikora J, Macdonald D D.  Electrochim Acta, 1996; 41: 783
[27] Li N, Li Y, Wang S G, Wang F H.  Electrochim Acta, 2006; 52: 760
[1] WEI Jie, WEI Yinghua, LI Jing, ZHAO Hongtao, LV Chenxi, DONG Junhua, KE Wei, HE Xiaoyan. Corrosion Behavior of Damaged Epoxy Coated Steel Bars Under the Coupling Effect of Chloride Ion and Carbonization[J]. 金属学报, 2020, 56(6): 885-897.
[2] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[3] CAO Fengting, WEI Jie, DONG Junhua, KE Wei, WANG Tiegang, FAN Qixiang. Corrosion Inhibition Behavior of 1-Hydroxyethylidene-1, 1-Diphosphonic Acid on 20SiMn Steel in Simulated Concrete Pore Solution Containing Cl-[J]. 金属学报, 2020, 56(6): 898-908.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[6] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[7] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[8] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[9] WANG Youde,XU Shanhua,LI Han,ZHANG Haijiang. Surface Characteristics and Stochastic Model of Corroded Structural Steel Under General Atmospheric Environment[J]. 金属学报, 2020, 56(2): 148-160.
[10] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[11] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[12] WANG Li,DONG Chaofang,ZHANG Dawei,SUN Xiaoguang,Chowwanonthapunya Thee,MAN Cheng,XIAO Kui,LI Xiaogang. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. 金属学报, 2020, 56(1): 119-128.
[13] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[14] Chao CAI,Yang LI,Jinfeng LI,Zhao ZHANG,Jianqing ZHANG. Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet[J]. 金属学报, 2019, 55(8): 958-966.
[15] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
No Suggested Reading articles found!