Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (9): 1041-1050    DOI: 10.3724/SP.J.1037.2013.00105
Current Issue | Archive | Adv Search |
ELEMENTS DIFFUSION LAW OF DD407/FGH95 DIFFU-SION BONDING UNDER HOT ISOSTATIC PRESSING: I. Building Diffusion Bonding Model
YAO Yao1), YE Jianshui1), DONG Jianxin1), YAO Zhihao1), ZHANG Maicang1),GUO Weimin2)
1)School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2)Central Iron & Steel Research Institute, Beijing 100081
Cite this article: 

YAO Yao, YE Jianshui, DONG Jianxin, YAO Zhihao, ZHANG Maicang,GUO Weimin. ELEMENTS DIFFUSION LAW OF DD407/FGH95 DIFFU-SION BONDING UNDER HOT ISOSTATIC PRESSING: I. Building Diffusion Bonding Model. Acta Metall Sin, 2013, 49(9): 1041-1050.

Download:  PDF(1350KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Turbine platform and blade are two main parts of aero engines and gas turbines.Due to different requirements in practice, platforms are always fabricated by single crystal superalloys, which have high temperature strength and resistance to hot corrosion and oxidation. The platforms employed at relatively lower temperatures can be made of powder superalloys. Therefore there is a great demand for bonding single crystal superalloys to powder superalloys. Because of high content of γ′ forming elements, traditional fusion welding methods employed in bonding the two materials are high susceptibility to cracking. Hot isostatic pressure (HIP) bonding is a preferable technique now to join nickel base superalloys. However, using experimental methods to explore appropriate HIP bonding parameters is time consuming and costly. This work puts forward a calculated method to simulate diffusion process and phase distribution of diffusion couples obtained by HIP diffusion bonding. In this work, the numerical model of HIP diffusion bonding was built, and distribution of elements and phases of DD407/FGH95 diffusion couples under different HIP temperature and bonding time were calculated  with DICTRA and Thermal—Calc software. The simulated results indicated that the appropriate HIP temperature should be chosen between 1120℃ and 1210℃. γ′ in DD407 and FGH95 kept initial concentration under 1120℃ HIP bonding.γ′ in FGH95 began to entirely solute and γ′ in DD407 partly solute under 1170℃ HIP bonding, and under 1210℃ HIP bonding, γ′ in DD407 could solute completely near the interface and partly solute away from the interface. The simulated results also implied that appropriate time for 1120℃ HIP bonding is 3—5 h, 1—3 h for 1170 and 1210℃ HIP bonding.

Key words:  DD407/FGH95 alloy      DICTRA software      diffusion bonding      hot isostatic pressing     
Received:  04 March 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00105     OR     https://www.ams.org.cn/EN/Y2013/V49/I9/1041

[1] Mao J, Wang W X, Yang W H.  Aviation Eng Maint, 1997; (2): 2

(毛健, 汪武祥, 杨万宏.航空制造工程, 1997; (2): 2)
[2] Klotz U E, Henderson M B, Wilcock I M, Davies S, Janschek P, Roth M, Casser P, Mccolvin G.  Mater Sci Technol, 2005; 21: 218
[3] Atkinson H V, Davies S.   Metall Mater Tans, 2000; 31A: 2981
[4] Borgenstam A, Engstrom A, Hoglund L, Agren J.  J Phase Equilib, 2000; 21: 269
[5] Larsson H, Hoglund L.   Comput Coupl Phase Diagrams Therm, 2009; 33: 495
[6] Anderson J O, Helander T, Hoglund L, Shi P F, Sundman B.  Calphad, 2002; 26: 273
[7] Tancret F.  Comput Mater Sci, 2007; 41: 13
[8] Ojo O A, Tancret F.  Comput Mater Sci, 2009; 45: 388
[9] He Y L, Li L, Huang S G, Vleugels J, Van der Bies O.   Rare Mater, 2007; 26: 492
[10] Engstrom A, Morral J E, Agren J.  Metall Mater Trans, 1994; 25A: 1127
[11] Jiang C, Jin Z P.  Trans Nonferrous Met Soc China, 2000; 10: 158
[12] Campbell C E, Zhao J C, Henry M F.  J Phase Equilib Diffus, 2004; 25: 6
[13] Larsson H, Enstrom A.  Acta Mater, 2006; 54: 2431
[14] Walter C, Hallstedt B, Warnken N.  Mater Sci Eng, 2005; A397: 385
[15] Dayananda M A.   Metall Trans, 1996; 27A: 2504
[16] Loh N L, Sia K Y.   J Mater Process Technol, 1992; 30: 45
[17] Jiao S Y, Dong J X, Zhang M C, Xie X S.  Mater Eng, 2009; (12): 10
(焦少阳, 董建新, 张麦仓, 谢锡善. 材料工程, 2009; (12): 10)
[18] Chen R Z.  Mater Eng, 1995; (8): 3
(陈荣章. 材料工程, 1995; (8): 3)
[19] Henrik S, Henrik L.  Acta Mater, 2004; 52: 4695
[20] Ashworth M A, Jacobs M H, Davies S.  Mater Des, 2000; 21: 351
[21] Orhan N, Aksoy M, Eroglu M.  Mater Sci Eng, 1999; A271: 458
[22] Peng X K, Heness G, Yeung W Y.  J Mater Sci, 1999; 34: 227
[23] Jia J, Tao Y, Zhang Y W.  J Iron Steel Res, 2011; 23: 510
(贾建, 陶宇, 张义文.钢铁研究学报, 2011; 23: 510)
[24] Yan L C, Yan P, Zhao J C.  Powder Metall Ind, 2012; 22: 21
(闫来成, 燕平, 赵京晨. 粉末冶金工程, 2012; 22: 21)
[25] Yan L C, Sun J H, Yan P, Zhao J C.   J Iron Steel Res, 2000; 12: 31

(阎来成, 孙家华, 燕平, 赵京晨. 钢铁研究学报, 2000; 12: 31)

[1] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[2] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[3] ZHAO Lei, WANG Hui, YANG Lixia, CHEN Xuebin, LANG Runqiu, HE Linfeng, CHEN Dongfeng, WANG Haizhou. First Exploration of Hot Isostatic Pressing High-Throughput Synthesis on Fe-Co-Ni Combinatorial Alloy[J]. 金属学报, 2021, 57(12): 1627-1636.
[4] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[6] Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. 金属学报, 2019, 55(6): 729-740.
[7] Lei XU, Ruipeng GUO, Jie WU, Zhengguan LU, Rui YANG. Progress in Hot Isostatic Pressing Technology ofTitanium Alloy Powder[J]. 金属学报, 2018, 54(11): 1537-1552.
[8] Dawei WANG,Shichao XIU. Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint[J]. 金属学报, 2017, 53(5): 567-574.
[9] Jie WU,Lei XU,Zhengguan LU,Yuyou CUI,Rui YANG. PREPARATION OF POWDER METALLURGY Ti-22Al-24Nb-0.5Mo ALLOYS ANDELECTRON BEAM WELDING[J]. 金属学报, 2016, 52(9): 1070-1078.
[10] Ruipeng GUO,Lei XU,Wenxiang CHENG,Jiafeng LEI,Rui YANG. EFFECT OF HOT ISOSTATIC PRESSING PARAMETERSON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF POWDER METALLURGY Ti-5Al-2.5Sn ELI ALLOY[J]. 金属学报, 2016, 52(7): 842-850.
[11] Mingfang WU,Fei LIU,Fengjiang WANG,Yanxin QIAO. INTERFACIAL REACTION AND STRENGTHENING MECHANISM OF CERAMIC MATRIX COMPOSITE JOINTS USING LIQUID PHASE DIFFUSION BONDING WITH AUXILIARY PULSE CURRENT[J]. 金属学报, 2015, 51(9): 1129-1135.
[12] YAO Yao, DONG Jianxin, YAO Zhihao, ZHANG Maicang,GUO Weimin. ELEMENTS DIFFUSION LAW OF DD407/FGH95 DIFFUSION BONDING UNDER HOT ISOSTATIC PRESSURE
II. Model Verification and Experimental Analysis
[J]. 金属学报, 2013, 49(9): 1051-1060.
[13] LI Shaoqiang, CHEN Zhiyong, WANG Zhihong, LIU Jianrong, WANG Qingjiang, . MICROSTRUCTURE STUDY OF A RAPID SOLIDIFICATION POWDER METALLURGY HIGH TEMPERATURE TITANIUM ALLOY[J]. 金属学报, 2013, 29(4): 464-474.
[14] LU Zheng, LU Chenyang, ZHANG Shouhui, XIE Rui, Liu Chunming. PREPARATION AND CHARACTERIZATION OF NANO-STRUCTURED 14Cr-ODS FERRITIC STEEL[J]. 金属学报, 2012, 48(6): 649-653.
[15] SHENG Liyuan GUO Jianting ZHANG Wei XIE Yi ZHOU Lanzhang YE Hengqiang. EFFECTS OF HIP AND HEAT TREATMENT ON MICROSTRUCTURE AND COMPRESSIVE PROPERTIES OF RAPIDLY SOLIDIFIED NiAl-Cr(Mo)-Hf EUTECTIC ALLOY[J]. 金属学报, 2009, 45(9): 1025-1029.
No Suggested Reading articles found!