Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (9): 1129-1135    DOI: 10.11900/0412.1961.2015.00100
Current Issue | Archive | Adv Search |
INTERFACIAL REACTION AND STRENGTHENING MECHANISM OF CERAMIC MATRIX COMPOSITE JOINTS USING LIQUID PHASE DIFFUSION BONDING WITH AUXILIARY PULSE CURRENT
Mingfang WU1,Fei LIU2,Fengjiang WANG1(),Yanxin QIAO1
1 Key Laboratory of Advanced Welding Technology of Jiangsu Province, Jiangsu University of Science and Technology, Zhenjiang 212003
2 Zhenjiang Institute of Technology, Zhenjiang 212000
Cite this article: 

Mingfang WU,Fei LIU,Fengjiang WANG,Yanxin QIAO. INTERFACIAL REACTION AND STRENGTHENING MECHANISM OF CERAMIC MATRIX COMPOSITE JOINTS USING LIQUID PHASE DIFFUSION BONDING WITH AUXILIARY PULSE CURRENT. Acta Metall Sin, 2015, 51(9): 1129-1135.

Download:  HTML  PDF(4079KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ceramic matrix composites (CMCs) is attracted in airspace and nuclear engineering due to their high temperature, corrosion and wearing resistance, but the usage is limited by the joining between CMC and other metals due to obvious incompatibility on physical and chemical aspects on them. The liquid phase-diffusion bonding (LPDB) on Ti(C, N)-Al2O3 CMC/Cu joint was studied using the Cu-Zr foil/Cu foil/Cu-Zr foil sanwich as an interlayer in this work. Auxiliary pulse current was also added to control the elemental diffusion and interfacial reaction during LPDB. The element diffusion and reacted products at the interface were analyzed with SEM, EPMA and EDS, and the joint strength was tested with four points bending method. The results show that with an auxiliary pulse current during LPDB, a higher joint strength is reached with a lower bonding temperature and a shorter holding time. The diffusion behavior of element Zr and Cu in CMC and the interfacial area is obviously changed, and the activity of Zr element and its chemical reaction with Al2O3 are depressed by the auxiliary pulse current during LPDB. The diffusion of ceramic partilces into the interface and the thickness of corresponding diffusion transition zone (DTZ) and Zr-Cu interfacial reaction zone (IRZ) at the interface are also depressed by the auxiliary pulse current, which strengthens the interface, and is always kept an higher joint strength.

Key words:  Ti(C,N)-Al2O3      liquid phase diffusion bonding      auxiliary pulse current      interfacial reaction      joint strengthening     
Fund: Supported by National Natural Science Foundation of China (No.51175239), Jiangsu Provincial Research Foundation for Basic Research (No.BK2011494) and College Natural Science Foundation of Jiangsu Province (No.11KJA430005)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00100     OR     https://www.ams.org.cn/EN/Y2015/V51/I9/1129

Fig.1  Microstructures (a, c) and element distributions by EPMA analysis (b, d) at interface on Ti(C, N)-Al2O3 joints bonding at 900 ℃ for 3 min (a, b) and 10 min (c, d) with auxiliary pulse current (The EPMA analysis is scanned along the lines in Figs.1a and c; CMC—ceramic matrix composite, DTZ—diffusion transition zone, IRZ—interfacial reaction zone)
Position Al Ti W Zr Cu
A 2.1 31.2 2.6 41.6 22.5
B - 1.2 0.5 59.6 38.7
C - - - 5.3 94.7
D - 62.4 2.9 29.8 4.9
E - 5.2 - 51.1 43.9
F 3.9 - - - 96.1
  
Fig.2  Microstructures (a, c) and element distributions by EPMA analysis (b, d) at interface on Ti(C, N)-Al2O3 joints bonding at 980 ℃ for 10 min (a, b) and 30 min (c, d) without auxiliary pulse current
Fig.3  Microstructures (a, c) and element distributions by EPMA analysis (b, d) at interface on Cu/Zr joints bonding at 870 ℃ for 10 min with (a, b) and without (c, d) auxiliary pulse current
Fig.4  Effect of heating temperature and holding time on bending strength of Ti(C, N)-Al2O3 joint
Fig.5  Schematic of crack propagation during four points bending testing on Ti(C, N)-Al2O3 joint without (a) and with (b) auxiliary pulse current
[1] Zhang D K, Wu A P, Zou G S. Trans China Weld Inst, 2005; 26(10): 59 (张德库, 吴爱萍, 邹贵生. 焊接学报, 2005; 26(10): 59)
[2] Wang Q Z, Liu Y, Zhang Y Z, Guan D H, Bi J. Trans China Weld Inst, 2006; 27(8): 43 (王全兆, 刘 越, 张玉政, 关德慧, 毕 敬. 焊接学报, 2006; 27(8): 43)
[3] Wu M F, Zhou X L, Ma C, Yang P. Trans China Weld Inst, 2006; 27(12): 1 (吴铭方, 周小丽, 马 骋, 杨 沛. 焊接学报, 2006; 27(12): 1)
[4] Wang Y, Cao J, Geng J C. China Welding, 2009; 18(4): 39
[5] Passerone A, Muolo M L. Mater Manuf Process, 2000; 15: 631
[6] Chen Z, Cao M S, Zhao Q Z. Mater Sci Eng, 2004; A380: 394
[7] Li Z R, Cao J, Feng J C. Trans China Weld Inst, 2003; 24(2): 4 (李卓然, 曹 健, 冯吉才. 焊接学报, 2003; 24(2): 4)
[8] Osendi M I, De Pablos A, Miranzo P. Mater Sci Eng, 2001; A308: 53
[9] Li S J, Liang X B, Duan H P. Key Eng Mater, 2002; 217: 101
[10] Rabin B H, Moore G A. In: Carin A H, Schwartz D S, Silberglitt R S, Loehman R E eds., Mater Res Soc Symp Proc, 1993; 314: 197
[11] He D H, Fu Z Y, Wang H, Zhang J Y. Trans China Weld Inst, 2002; 23(6): 33 (何代华, 傅正义, 王 皓, 张金咏. 焊接学报, 2002; 23(6): 33)
[12] He D H, Fu Z Y, Wang H, Zhang J Y. Trans China Weld Inst, 2002; 23(1): 85 (何代华, 傅正义, 王 皓, 张金咏. 焊接学报, 2002; 23(1): 85)
[13] Liu H J, Feng J C, Li G, Wang Y G. Welding Joining, 2000; (9): 7 (刘会杰, 冯吉才, 李 广, 王跃国. 焊接, 2000; (9): 7)
[14] Wanger T, Kirchheim R, Rühle M. Acta Metall Mater, 1995; 43: 1053
[15] Zhang G, Zhang J, Pei Y, Li S, Chai D. Mater Sci Eng, 2008; A488: 146
[16] Yang W, Lin T, He P, Wei H, Xing L, Jia D. Ceram Int, 2014; 40: 7253
[17] Wu M F, Yu Z S, Jiang C Y, Qi K, Cheng X N. Rare Met Mater Eng, 2000; 29: 419 (吴铭方, 于治水, 蒋成禹, 祁 凯, 程晓农. 稀有金属材料与工程, 2000; 29: 419)
[18] Wu M F, Wang F, Wang F J, Xu G X. Trans China Weld Inst, 2014; 35(6): 31 (吴铭方, 王 斐, 王凤江, 胥国祥. 焊接学报, 2014; 35(6): 31)
[19] Loehman R E, Hosking F M, Gauntt B, Kotula P G, Lu P. J Mater Sci, 2005; 40: 2319
[20] Ye D L,Hu J H. Practical Handbook on the Thermodynamic Data of Inorganic Substances. 2nd Ed., Beijing: Metallurgical Industry Press, 2002: 57 (叶大伦,胡建华. 实用无机物热力学数据手册. 第二版, 北京: 冶金工业出版社, 2002: 57)
[21] Ihsan B I,translated by Cheng N L,Niu S T,Xu G Y. Thermochemical Data of Pure Substances. Beijing: Science Press, 2003: 17 (Ihsan B I著,程乃良,牛四通,徐桂英译. 纯物质热化学数据手册. 北京: 科学出版社, 2003: 17)
[22] Xu R,Jin T F.Thermodynamics and Kinetics of Materials. Harbin: Harbin Institute of Technology Press, 2003: 10 (徐 瑞,荆天辅.材料热力学与动力学. 哈尔滨: 哈尔滨工业大学出版社, 2003: 10)
[23] Chen Z, Liu B, Wang Y X, Wei Q L. Rare Met Mater Eng, 2001; 30: 331 (陈 铮, 刘 兵, 王永欣, 魏齐龙. 稀有金属材料与工程, 2001; 30: 331)
[24] Chang G W, Xue Q G. J Univ Sci Technol Beijing, 1999; 21: 175 (常国威, 薛庆国. 北京科技大学学报, 1999; 21: 175)
[25] He S X, Wang J, Zhou Y H. Acta Metall Sin, 2002; 38: 479 (何树先, 王 俊, 周尧和. 金属学报, 2002; 38: 479)
[1] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[3] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[4] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[5] Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG. Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism[J]. 金属学报, 2019, 55(1): 87-100.
[6] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
[7] Zhijie ZHANG,Mingliang HUANG. Liquid-Solid Electromigration Behavior of Cu/Sn-52In/Cu Micro-Interconnect[J]. 金属学报, 2017, 53(5): 592-600.
[8] Peng JIN,Ran SUI,Fuxiang LI,Weiyuan YU,Qiaoli LIN. Reactive Wetting of TC4 Titanium Alloy by Molten 6061 Al and 4043 Al Alloys[J]. 金属学报, 2017, 53(4): 479-486.
[9] Yumin WANG, Guoxing ZHANG, Xu ZHANG, Qing YANG, Lina YANG, Rui YANG. ADVANCES IN SiC FIBER REINFORCED TITANIUM MATRIX COMPOSITES[J]. 金属学报, 2016, 52(10): 1153-1170.
[10] Xiaoyan CHEN,Zhe JIN,Xuefeng BAI,Yizhou ZHOU,Tao JIN,Xiaofeng SUN. EFFECT OF C ON THE INTERFACIAL REACTION AND WETTABILITY BETWEEN A Ni-BASED SUPERALLOY AND CERAMIC MOULD[J]. 金属学报, 2015, 51(7): 853-858.
[11] HUANG Mingliang, ZHANG Zhijie, FENG Xiaofei, ZHAO Ning. REVERSE POLARITY EFFECT IN Ni/Sn-9Zn/Ni INTERCONNECT UNDERGOING LIQUID- SOLID ELECTROMIGRATION[J]. 金属学报, 2015, 51(1): 93-99.
[12] CHEN Xiaoyan, ZHOU Yizhou, ZHANG Chaowei, JIN Tao, SUN Xiaofeng. EFFECT OF Hf ON THE INTERFACIAL REACTION BETWEEN A NICKEL BASE SUPERALLOY AND A CERAMIC MATERIAL[J]. 金属学报, 2014, 50(8): 1019-1024.
[13] WU Mingfang, KUANG Hongjin, WANG Fengjiang, LIN Hongxiang, XU Guoxiang. PARTIALLY TRANSIENT LIQUID PHASE-DIFFUSION BONDING ON Ti(C, N)-Al2O3 CERAMIC MATRIX COMPOSITES USING Zr/Cu/Zr AS INTERLAYER[J]. 金属学报, 2014, 50(5): 619-625.
[14] KE Changbo, ZHOU Minbo, ZHANG Xinping. PHASE FIELD SIMULATION ON MICROSTRUCTURE EVOLUTION AND GROWTH KINETICS OF Cu6Sn5 INTERMETALLIC COMPOUND DURING EARLY INTERFACIAL REACTION IN Sn/Cu SOLDERING SYSTEM[J]. 金属学报, 2014, 50(3): 294-304.
[15] ZHOU Minbo, MA Xiao, ZHANG Xinping. THE INTERFACIAL REACTION AND INTERMETALLIC COMPOUND GROWTH BEHAVIOR OF BGA STRUC-TURE Sn-3.0Ag-0.5Cu/Cu SOLDER JOINT AT LOW REFLOW TEMPERATURES[J]. 金属学报, 2013, 49(3): 341-350.
No Suggested Reading articles found!