Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (9): 1070-1078    DOI: 10.11900/0412.1961.2016.00019
Orginal Article Current Issue | Archive | Adv Search |
PREPARATION OF POWDER METALLURGY Ti-22Al-24Nb-0.5Mo ALLOYS ANDELECTRON BEAM WELDING
Jie WU,Lei XU(),Zhengguan LU,Yuyou CUI,Rui YANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Jie WU,Lei XU,Zhengguan LU,Yuyou CUI,Rui YANG. PREPARATION OF POWDER METALLURGY Ti-22Al-24Nb-0.5Mo ALLOYS ANDELECTRON BEAM WELDING. Acta Metall Sin, 2016, 52(9): 1070-1078.

Download:  HTML  PDF(1137KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ti2AlNb alloys are considered as a potential structural material for high temperature applications like gas turbine engine components due to their high specific strength and good creep resistance. In this work, pre-alloyed powder of Ti-22Al-24Nb-0.5Mo (atomic fraction, %) was prepared by an electrode induction melting gas atomization process and powder metallurgy (PM) alloys was made through a hot isostatic pressing (HIPing) route. PM Ti-22Al-24Nb-0.5Mo rings and plates were welded by electron beam welding (EBW). The microstructure of the welded joints was investigated by OM, SEM, EPMA and X-ray tomography. The effect of post-weld heat treatments (PWHT) on the microhardness, tensile properties and rupture lifetime at 650 ℃, 360 MPa of the welding joint of PM Ti-22Al-24Nb-0.5Mo plate was also studied. The results show that the HIPing temperature will affect the porosity distribution of PM Ti-22Al-24Nb-0.5Mo alloys. The PM Ti-22Al-24Nb-0.5Mo rings HIPed at 1030 ℃ after 980 ℃, 2 h, vacuum furnace cooling show good weldability. The fusion zone (FZ), heat affected zone (HAZ) and base metal (BM) of welded joints show homogeneous chemical composition. The microstructures of FZ, HAZ and BM are different while the microhardnesses of FZ, HAZ and BM show no obvious differences. Tensile and stress rupture lifetime testing specimens all fracture in the FZ. It is found that there are a certain number of micro-porosity in the FZ of the welded joints. However, the porosity reduces after PWHT, which will improve the high temperature ductility and rupture properties of the PM Ti-22Al-24Nb-0.5Mo welded joints.

Key words:  hot isostatic pressing      powder metallurgy Ti-22Al-24Nb-0.5Mo alloy      porosity      electron beam welding     
Received:  08 January 2016     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00019     OR     https://www.ams.org.cn/EN/Y2016/V52/I9/1070

Fig.1  Rings (a) and plate (b) of powder metallurgy Ti-22Al-24Nb-0.5Mo alloys after electron beam welding
Fig.2  Schematics of the specimens of as-welded powder metallurgy Ti-22Al-24Nb-0.5Mo alloys for tensile tests (a) and rupture lifetime tests at 650 oC and 360 MPa (b) (unit: mm, FZ—fusion zone)
Fig.3  SEM images of Ti-22Al-24Nb-0.5Mo pre-alloyed powders in full view (a) and high-magnification of Fig.3a (b)
Fig.4  XRD spectrum of Ti-22Al-24Nb-0.5Mo pre-alloyed powder
Fig.5  Micro- porosity distribution of PM Ti- 22Al- 24Nb-0.5Mo alloys under different HIP temperatures[11]
Sample Al Nb Mo O N H Ar Ti
Pre-alloyed powder 10.4 41.3 0.92 0.065 0.0021 0.0006 <0.0005 Bal.
As-HIPed compact 10.3 41.4 0.90 0.065 0.0100 0.0010 <0.0005 Bal.
Table 1  Chemical compositions of Ti-22Al-24Nb-0.5Mo pre-alloyed powders and as-HIPed compacts (mass fraction / %)
Fig.6  OM images (a, b) and corresponding X-ray inspections (c, d) of as-welded joints of the HIPed (a, c) and heat-treated (b, d) Ti-22Al-24Nb-0.5Mo alloys
Fig.7  The microstructure (a), Al distribution (b) and Nb distribution (c) of as-welded powder metallurgy Ti-22Al-24Nb-0.5Mo alloys joints (HAZ—heat affected zone, BM—base metal)
Fig.8  Microhardness distributions of powder metallurgy Ti-22Al-24Nb-0.5Mo alloys joints at as-welded state (a) and as-welded + PWHT state (b) (PWHT—post-weld heat treatment)
Sample T / oC Rm / MPa δ / % L / h Rm1/Rm2 Fracture location
BM 20 1072 10.0
12.0
25 -
-
-
-
650 743
As-weld 20 978 4.0 0.3 94% Joint
650 680 - 93% Joint
As-weld+HT1 20 710 -
6.0
3 69%
92%
Joint
Joint
650 675
As-weld+HT2 20 948 3.0 3 92% Joint
650 660 12.0 90% Joint
As-weld+HT3 20 941 4.0 5 91% Joint
650 590 6.0 81% Joint
Table 2  Mechanical properties of powder metallurgy Ti-22Al-24Nb-0.5Mo alloys electron beam welded joints
[1] Banerjee D, Gogia A K, Nandi T K, Joshi V A.Acta Metall, 1988; 36: 871
[2] Wang Z, Cao L, Liu R C, Liu D, Cui Y Y, Yang R.Acta Metall Sin, 2013; 49: 1487
[2] (王震, 曹磊, 刘仁慈, 刘冬, 崔玉友, 杨锐. 金属学报, 2013, 49: 1487)
[3] Boehlert C J, Majumdar B S, Seetharaman V, Miracle D B.Metall Mater Trans, 1999; 30A: 2305
[4] Zhang S Z.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004
[4] (张尚洲. 中国科学院金属研究所博士学位论文, 沈阳, 2004)
[5] Hu D, Wu X, Loretto M H.Intermetallics, 2005; 13: 914
[6] Wang Y.PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2011
[6] (王永. 中国科学院金属研究所博士学位论文, 沈阳, 2011)
[7] Yang R.Acta Metall Sin, 2015; 51: 129
[7] (杨锐. 金属学报, 2015; 51: 129)
[8] Wegmann G, Gerling R, Schimansky F P.Acta Mater, 2003; 51: 741
[9] Wu J, Xu L, Lu B, Cui Y Y, Yang R.Chin J Mater Res, 2014; 28: 387
[9] (吴杰, 徐磊, 卢斌, 崔玉友, 杨锐. 材料研究学报, 2014; 28: 387)
[10] Rao K P, Prasad Y V R K, Suresh K.Mater Des, 2011; 32: 4874
[11] Wu J, Xu L, Lu Z G, Lu B, Cui Y Y, Yang R.J Mater Sci Technol, 2015; 31: 1251
[12] Wang G, Xu L, Tian Y X, Zheng Z, Cui Y Y, Yang R.Mater Sci Eng, 2011; A528: 6754
[13] Chen Z Y, Wang Q J, Liu J R, Li Y L, Yang R, Li J W, Liu F J.Acta Metall Sin, 2008; 44: 263
[13] (陈志勇, 王清江, 刘建荣, 李玉兰, 杨锐, 李晋炜, 刘方军. 金属学报, 2008; 44: 263)
[14] Deng Y H, Guan Q, Tao J, Wu B, Wang X C.Acta Metall Sin, 2015; 51: 1111
[14] (邓云华, 关桥, 陶军, 吴冰, 王西昌. 金属学报, 2015; 51: 1111)
[15] Guo R P. Master Thesis, Northeastern University, Shenyang, 2014
[15] (郭瑞鹏. 东北大学硕士学位论文, 沈阳, 2014)
[16] Guo R P, Xu L, Wu J, Yang R, Zong B Y. Mater Sci Eng, 2015; A639: 327
[17] Wang S G, Wang S C, Zhang L.Acta Metall Sin, 2013; 49: 897
[17] (王绍钢, 王苏程, 张磊. 金属学报, 2013; 49: 897)
[18] Xu L, Wu J, Cui Y Y, Yang R.In: Kim Y W, Smarsly W, Lin J P, Dimiduk D, Appel F eds., Gamma Titanium Aluminide Alloys 2014, Warrendale, PA: TMS, 2014: 195
[19] Liu X W, Su Y Q, Luo L S, Li K, Dong F Y, Guo J J, Fu H Z.Int J Hydrogen Energy, 2011; 36: 3260
[20] Li W B, Easterling K E.Powder Metall, 1992; 35: 47
[21] Xu L, Guo R P, Bai C G, Lei J F, Yang R.J Mater Sci Technol, 2014; 30: 1289
[22] Wu J, Xu L, Guo R P, Lu Z G, Cui Y Y, Yang R.Mater Res Innovations, 2015; 19(sup9): 46
[23] Kou S. WeldingMetallurgy.2nd ed . Canada: John Wiley &Sons, 2003: 27
[24] Boehlert C J.Metall Mater Trans, 2001; 32A: 1977
[25] Boehlert C J, Miracle D B.Metall Mater Trans, 1999; 30A: 2349
[1] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[2] ZHAO Lei, WANG Hui, YANG Lixia, CHEN Xuebin, LANG Runqiu, HE Linfeng, CHEN Dongfeng, WANG Haizhou. First Exploration of Hot Isostatic Pressing High-Throughput Synthesis on Fe-Co-Ni Combinatorial Alloy[J]. 金属学报, 2021, 57(12): 1627-1636.
[3] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[5] Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. 金属学报, 2019, 55(6): 729-740.
[6] Zhiming GAO, Wanqi JIE, Yongqin LIU, Haijun LUO. Formation Mechanism and Coupling Prediction of Microporosity and Inverse Segregation: A Review[J]. 金属学报, 2018, 54(5): 717-726.
[7] Lei XU, Ruipeng GUO, Jie WU, Zhengguan LU, Rui YANG. Progress in Hot Isostatic Pressing Technology ofTitanium Alloy Powder[J]. 金属学报, 2018, 54(11): 1537-1552.
[8] Ruipeng GUO,Lei XU,Wenxiang CHENG,Jiafeng LEI,Rui YANG. EFFECT OF HOT ISOSTATIC PRESSING PARAMETERSON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF POWDER METALLURGY Ti-5Al-2.5Sn ELI ALLOY[J]. 金属学报, 2016, 52(7): 842-850.
[9] Bingbing YU,Zhiyong CHEN,Zibo ZHAO,Jianrong LIU,Qingjiang WANG,Jinwei LI. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ELECTRON BEAM WELDMENT OF TITANIUM ALLOY TC17[J]. 金属学报, 2016, 52(7): 831-841.
[10] Longfei CHEN,Yikun LUAN,Dianzhong LI,Yiyi LI. SOLID FEEDING MECHANISM AND ITS APPLICA-TION ON CASTINGS WITH LARGE HEIGHT-TO-DIAMETER RATIO[J]. 金属学报, 2016, 52(12): 1510-1516.
[11] Yongchang LIU, Qianying GUO, Chong LI, Yunpeng MEI, Xiaosheng ZHOU, Yuan HUANG, Huijun LI. RECENT PROGRESS ON EVOLUTION OF PRECIPI-TATES IN INCONEL 718 SUPERALLOY[J]. 金属学报, 2016, 52(10): 1259-1266.
[12] Xianfei DING,Dongfang LIU,Yunrong ZHENG,Qiang FENG. EFFECT OF B MICRO-ALLOYING ON MICRO-POROSITIES IN AS-CAST HK40 ALLOYS[J]. 金属学报, 2015, 51(9): 1121-1128.
[13] YE Xinglong, LIU Feng, JIN Haijun. ELECTROCHEMICAL ACTUATION OF NANOPOROUS GOLD DEFORMED BY COMPRESSION[J]. 金属学报, 2014, 50(2): 252-258.
[14] GAO Heng, SONG Yuanyuan, ZHAO Mingjiu, HU Xiaofeng, RONG Lijian. EFFECTS OF TEMPERING ON THE MICROSTRUC-TURE AND MECHANICAL PROPERTY OF ELECTRON BEAM WELDING JOINT OF 9Cr2WVTa STEEL[J]. 金属学报, 2014, 50(12): 1429-1436.
[15] LI Yongkui, CHEN Jundan, LU Shanping. RESIDUAL STRESS IN THE WHEEL OF 42CrMo STEEL DURING QUENCHING[J]. 金属学报, 2014, 50(1): 121-128.
No Suggested Reading articles found!