Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (9): 1051-1060    DOI: 10.3724/SP.J.1037.2013.00106
Current Issue | Archive | Adv Search |
ELEMENTS DIFFUSION LAW OF DD407/FGH95 DIFFUSION BONDING UNDER HOT ISOSTATIC PRESSURE
II. Model Verification and Experimental Analysis
YAO Yao1), DONG Jianxin1), YAO Zhihao1), ZHANG Maicang1),GUO Weimin2)
1)School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2)Central Iron & Steel Research Institute, Beijing 100081
Cite this article: 

YAO Yao, DONG Jianxin, YAO Zhihao, ZHANG Maicang,GUO Weimin. ELEMENTS DIFFUSION LAW OF DD407/FGH95 DIFFUSION BONDING UNDER HOT ISOSTATIC PRESSURE

II. Model Verification and Experimental Analysis
. Acta Metall Sin, 2013, 49(9): 1051-1060.

Download:  PDF(8217KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Manufacturing dual superalloy turbine rotor is becoming an important direction of development in the field of aviation and aerospace. In order to improve working temperature and service life of turbine rotor, blade materials have been evolved to single crystal superalloys, turbine disc materials have also been developed to powder superalloys. Therefore the connection of these two materials has become key problem in improving turbine performance. Nowadays hot isostatic pressure (HIP) bonding is a preferable bonding technique due to no fusion and macroscopic deformation in bonding area. In HIP bonding process, elements diffusion is the key factor in forming microstructure of interface, and determining interfacial properties. At present, articles about HIP diffusion bonding mainly focused on interfacial microstructure and mechanical test of bonding couples, while few articles explored the relationship between elements diffusion and microstructure forming. In this work, diffusion couples of DD407 and FGH95 alloys were conducted under 1120, 1170, 1210℃ and 120 MPa HIP for 3 h, the microstructure and elements distribution of interface were studied to verify simulated results in the last article, and explore interface formation mechanism. Then the relationship between simulated phase distribution and actual microstructure of interface was built, which can be used to forecast interface morphology. And also the recrystallization in bonding zone was studied. Combining simulated and experimental results, this work put forwards principles for HIP bonding process controlling.

Key words:  DD407/FGH95 alloy      morphology      diffusion bonding      hot isostatic pressure     
Received:  04 March 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00106     OR     https://www.ams.org.cn/EN/Y2013/V49/I9/1051

[1] Liu J D, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q.  Sci Technol Weld Joining, 2010; 15:194

[2] Atkinson H V, Davies S.  Metall Mater Tans, 2000; 31A: 2981
[3] Wang X F, Ma M, Liu X B, Wu X Q, Tan C G, Shi R K, Lin J G.  Trans Nonferrous Met Soc China,2006; 16: 1059
[4] Wu H Y, Lee S Y, Wang J Y.  J Mater Process Technol, 1998; 75: 173
[5] Dong J X, He D, Zhang M C, Zeng Y P.  J Univ Sci Technol Beijing, 2003; 25: 36
(董建新, 何冬, 张麦仓, 曾燕屏. 北京科技大学学报. 2003; 25: 36)
[6] Rees M, Hurst R C, Parker J D.  J Mater Sci, 1996; 31: 4493
[7] Watanabe M, Horita Z, Smith D J, Mcartnry M R, Sano T, Nemoto M.  Acta Metall Mater,1994; 42: 3381
[8] Watanabe M, Horita Z, Sano T, Nemoto M.  Acta Metall Mater, 1994; 42: 3389
[9] Yan L C, Sun J H, Dong D J, Zhao J C, Yan P.  J Univ Sci Technol Beijing, 2001; 23: 53
(闫来成, 孙家华, 董德俊, 赵京晨, 燕平. 北京科技大学学报, 2001; 23: 53)
[10] Ashworth M A, Jacobs M H, Davies S.  Mater Des, 2000; 21: 351
[11] Yao Y, Ye J S, Dong J X, Yao Z H, Zhang M C, Guo W M.  Acta Metall Sin,2013; 49: 1041
(姚瑶, 叶建水, 董建新, 姚志浩, 张麦仓, 国为民. 金属学报, 2013; 49: 1041)
[12] Porter D A, Easter K E, translated by Li C H, Yu Y N.  Phase Transformation in Metals and Alloys.Beijing: Metallurgical Industry Press, 1988: 177
(Porter D A, Easter K E著, 李长海, 余永宁~译. 金属和合金中的相变. 北京: 冶金工业出版社, 1988: 177)
[13] Jia J, Tao Y, Zhang Y W, Zhang Y.  J Aeronaut Mater, 2008; 28: 20
(贾建, 陶宇, 张义文, 张莹. 航空材料学报, 2008; 28: 20)
[14] Cheng K Y, Jo C Y, Jin T, Hu Z Q.  Mater Des, 2010; 31: 968
[15] Matan N, Cox D C, Rae C M F, Reed R C.  Acta Mater, 1999; 47: 2031
[16] Pollock T M, Argon A S.  Acta Metall Mater, 1994; 42: 1859
[17] Cheng K Y, Jo C Y, Kim D H, Jin T, Hu Z Q.  Mater Charact, 2009; 60: 210
[18] Tian S G, Zhou H H, Zhang J H, Yang H C, Xu Y B, Hu Z Q.  Acta Metall Sin, 1998; 34: 591
(田素贵, 周惠华, 张静华, 杨洪才, 徐永波, 胡壮麒. 金属学报, 1998: 34: 591)
[19] Danersi W P, Donachia M J, Radavich J F.  ASM Trans Quart, 1966; 59: 505
[20] Mullins W W, Sekerka R F.  J Appl Phys, 1963; 34: 323
[21] Yoo Y S.  Scr Mater, 2005; 53: 81
[22] Schwarz S M, Kempshal1 B W, Giannuzzi L A.  Acta Mater, 2003; 51: 2765
[23] Yu Y Q, Yao Z K.  Acta Metall Sin, 2012; 48: 1005
(余永权, 姚泽坤. 金属学报, 2012; 48: 1005)
[24] Xu Z W, Ruan Z J, Zhang G L, Huang Z.  Weld Technol, 2003; 32: 8
(徐子文, 阮中健, 张桂林, 黄正.焊接技术, 2003; 32: 8)
[25] Nathal M V.  Matall Trans, 1987; 18: 1961
[1] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[2] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[3] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[4] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[6] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
[7] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[8] Wensheng XU, Wenzheng ZHANG. An Investigation of the Crystallography of Pearlites Nucleated on the Proeutectoid Cementite[J]. 金属学报, 2019, 55(4): 496-510.
[9] Chengming ZHENG, Qingchao TIAN. Effect of Alloy Elements on Oxidation Behavior of Piercing Plug Steel[J]. 金属学报, 2019, 55(4): 427-435.
[10] YANG Gaolin, LIN Xin, LU Xiangang. Crystallization Morphology and Evolution Mechanism of Laser Multiple Remelting of Zr55Cu30Al10Ni5 Metallic Glass[J]. 金属学报, 2019, 55(12): 1544-1550.
[11] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[12] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
[13] Baogang WANG, Hongliang YI, Guodong WANG, Zhichao LUO, Mingxin HUANG. Reconstruction of 3D Morphology of TiB2 in In Situ Fe Matrix Composites[J]. 金属学报, 2019, 55(1): 133-140.
[14] Siqian BAO, Bingbing LIU, Gang ZHAO, Yang XU, Shanshan KE, Xiao HU, Lei LIU. Three-Dimensional Morphologies of Abnormally Grown Goss Oriented Grains in Hi-B Steel During Secondary Recrystallization Annealing[J]. 金属学报, 2018, 54(6): 877-885.
[15] Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. 金属学报, 2018, 54(5): 809-823.
No Suggested Reading articles found!