Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (8): 1017-1024    DOI:
Current Issue | Archive | Adv Search |
INHIBITION PROPERTY AND ADSORPTION BEHAVIOR OF IMIDAZOLE AND 2—PHENYL—2—IMIDAZOLINE ON Cu IN H2SO4 SOLUTION
HE Xinkuai, HOU Bailong, JIANG Yumei, LI Chen, WU Luye
School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007
Cite this article: 

HE Xinkuai, HOU Bailong, JIANG Yumei, LI Chen, WU Luye. INHIBITION PROPERTY AND ADSORPTION BEHAVIOR OF IMIDAZOLE AND 2—PHENYL—2—IMIDAZOLINE ON Cu IN H2SO4 SOLUTION. Acta Metall Sin, 2013, 49(8): 1017-1024.

Download:  PDF(2457KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mass loss and electrochemical methods were carried out to evaluate the inhibition property and adsorption behavior of imidazole and 2-Phenyl-2-imidazoline for Cu in 5% H2SO4 solution. The results showed that the two compounds have obvious corrosion inhibition for Cu in H2SO4 solution, and the inhibition efficiency of 2-Phenyl-2-imidazoline was higher than that of imidazole. Meanwhile, the adsorption property was estimated using the activation energy Ea of the corrosion reaction, the standard adsorption Gibbs free energy change ΔGm and enthalpy change ΔHm for the imidazole and 2-phenyl-2-imidazoline, respectively. It revealed that the adsorption processes were exothermic reactions on Cu by a monolayer chemisorption--based mechanism, and the adsorption of the inhibitors followed the Langmuir adsorption isotherm. In addition, the differences of the monolayer adsorption structures between the imidazole and 2-Phenyl-2-imidazoline molecules on the Cu surface were investigated, and their inhibition mechanisms for Cu were analyzed.

Key words:  2-Phenyl-2-imidazoline      Cu      adsorption property      inhibition mechanism     
Received:  06 May 2013     

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2013/V49/I8/1017

[1] Huvnh N, Bottle S E, Notoya T, Trueman A, Hinton B,Schweinsberg D P. Corros Sci, 2002; 44: 1257
[2] He X K, Chen B Z, Zhang Q F. J Chin Soc Corros Prot, 2004; 24: 1
(何新快, 陈白珍, 张钦发. 中国腐蚀与防护学报, 2004; 24: 1)
[3] Mihit M, El Issami S, Bouklah A, Bazzi L, Hammouti B, Addi A E, Salghi R, Kertit S. Appl Surf Sci, 2006; 252: 2389
[4] Zhang D Q, Gao L X. Corros Sci Prot Technol, 2001;13: 136
(张大全, 高立新. 腐蚀科学与防护技术, 2001; 13: 136)
[5] Zhou J H, Li J N, Luo Z Y. J South China Normal Univ, 2009; 3: 70
(周建华, 李景宁, 罗志勇. 华南师范大学学报, 2009; 3: 70)
[6] Wang X Q, Liu R Q, Zhu L Q, Gong J W. Acta Phys Chim Sin, 2007; 23: 21
(王献群, 刘瑞泉, 朱丽琴, 宫建伟. 物理化学学报, 2007; 23: 21)
[7] Zhang X J, Liu R Q, Wang X Q. Acta Phys-Chim Sin,2008; 24: 338
(张秀娟, 刘瑞泉, 王献群. 物理化学学报, 2008; 24: 338)
[8] Ek-Lisac S E, Gazivoda A, Madzarac M. Electrochim Acta, 2002; 47: 4189
[9] Liao D M, Yu P, Luo Y B, Song B, Yao L, Chen Z G. J Chin Soc Corros Prot, 2002; 22: 359
(廖冬梅, 于萍, 罗运柏, 宋斌, 姚琳, 陈志国.中国腐蚀与防护学报, 2002; 22: 359)
[10] Ali S A, El-Shareef A M, Al-Ghamdi R F, Saeed M T.Corros Sci, 2005; 47: 2659
[11] Yin Y J. Concise Course of Physical Chemistry.Beijing: Higher Education Press, 2007: 293
(印永嘉.物理化学简明教程. 北京: 高等教育出版社, 2007: 293)
[12] Ebenso E E, Ekpe U J, Ita B I, Offiong O E, Ibok U J.Mater Chem Phys, 1999; 60: 79
[13] Abd EI Rehim S S, Amin M A, Moussa S O, Ellithy A S.Mater Chem Phys, 2008; 112: 898
[14] Bouklah M, Benchat N, Hammouti B, Aouniti A, Kertit S.Mater Lett, 2006; 60: 1901
[15]De Souza F S, Giacomelli C, Goncalves R S, Spinelli A. Mater Sci Eng, 2012; C32: 2436
[16]Ahamad I, Prasad R, Quraishi M A. J Solid State Electrochem, 2010; 14: 2095
[17]Dahmani M, Touhami A E, Al-Deyab S S, Hammouti B, Bouyanzer A. Int J Electrochem Sci, 2010; 5: 1060
[18]Yazdzad A R, Shahrabi T, Hosseini M G. Mater Chem Phys, 2008; 109: 199
[19]Atkins P W. Physical Chemistry. 6 Ed., Oxford:Oxford University Press, 1999: 857
[20]Cao C N. Electrochemistry of Corrosion. Beijing:Chemical Industry Press, 1994: 66
(曹楚南. 腐蚀电化学. 北京: 化学工业出版社, 1994: 66)
[21]Wang H L, Fan H B, Zheng J S. Mater Chem Phys,2003; 77: 655
[22]Touir R, Cenoui M, Bakri M E, Touhami M E. Corros Sci, 2008; 50: 1530
[23]Bouklah M, Hammouti B, Lagrenee M, Bentiss F.Corros Sci, 2006; 48: 283
[24]Abiola O K, Otaigbe J O E. Corros Sci, 2009; 51:2790
[25]Tian H, Li W, Cao K, Hou B. Corros Sci, 2013; 73:281
[26]Wei B M. Metal Corrosion Theory and Application.Beijing: Chemical Industry Press, 1984: 266
(魏宝明. 金属腐蚀理论及应用. 北京: 化学工业出版社, 1984: 266)

[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[5] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[6] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[7] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[8] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[9] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[10] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[11] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[12] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[13] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[14] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[15] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
No Suggested Reading articles found!