Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (5): 583-592    DOI: 10.3724/SP.J.1037.2012.00699
Current Issue | Archive | Adv Search |
EFFECTS OF AUSTENITIZATION AND COOLING RATES  ON THE MICROSTRUCTURE IN A HYPEREUTECTOID STEEL
LI Junjie, Godfrey Andrew, LIU Wei
Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
Cite this article: 

LI Junjie, Godfrey Andrew, LIU Wei. EFFECTS OF AUSTENITIZATION AND COOLING RATES  ON THE MICROSTRUCTURE IN A HYPEREUTECTOID STEEL. Acta Metall Sin, 2013, 49(5): 583-592.

Download:  PDF(4049KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cold-drawn pearlitic steel wires have the highest strength of all steel products. It is a promising way to enhance the mechanical properties by increasing the carbon content. However, the proeutectoid cementite forms easily due to the hypereutectoid composition and deteriorates the mechanical and processing properties of steel wires. It is important for hypereutectoid steel wire drawing to achieve a fine and fully pearlitic microstructure without proeutectoid cementite. The austenitization and following continuous cooling process were simulated in the dilatometer for a hypereutectoid steel. The microstructure was observed with OM and SEM. The transformation temperature, prior--austenite grain size, pearlitic interlamellar spacing and proeutectoid cementite thickness were determined by dilatometric curves or OM/SEM images. The austenite grain size increases rapidly with a higher temperature and almost keeps invariant with a longer austenitization time. Faster cooling rate, higher austenitization temperature or longer austenitization time decrease the starting and finishing temperature of phase transformation, widen the temperature range, refine the pearlitic interlamellar spacing and suppress the proeutectoid cementite precipitation (reduce the thickness or make it discontinuous). However, it is easy to form martensite which is bad for the homogeneity of pearlitic microstructure by increasing the cooling rate or austenitization temperature simply. A fine pearlite in a pseudoeutectoid microstructure is achieved by extending the austenitization time to 60 min and controlling the austenitization temperature and cooling rate. Discontinuous proeutectoid cementite is observed in the samples with the higher austenitization temperature. Higher austenitization temperature and longer time are helpful to weaken the carbon concentration gradient. The homogeneous carbon distribution restrains carbon diffusion for cementite nucleation during the proeutectoid cementite precipitation and pearlite transformation, which decreases the transformation temperature. Compare to pearlite transformation, the proeutectoid cementite precipitation is affected more strongly by the carbon diffusion due to a longer diffusion distance. Therefore, the precipitation amount of proeutectoid cementite is reduced if the carbon diffusion is restrained. The amount of grain corner and grain edge reduce more dramatically than that of grain boundary if austenite grain size increases. The proeutectoid cementite only nucleates in grain corner and grain edge. The pearlite nucleation can form in grain boundary. Therefore, the larger austenite grains result in the sharp reduction in the sites for nucleation of proeutectoid cementite. Then, the amount of proeutectoid cementite are reduced and the morphology becomes discontinuous.

Key words:  hypereutectoid steel      austenitization      cooling rate      proeutectoid cementite,      interlamellar spacing      transformation temperature      diffusion     
Received:  23 November 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00699     OR     https://www.ams.org.cn/EN/Y2013/V49/I5/583

[1] Li Y J, Choi P, Goto S, Borchers C, Raabe D, Kirchheim R.  Acta Mater, 2012; 60: 4005


[2] Tashiro H.  Nipp Steel Tec Rep, 1999; 80: 6

[3] Choi H C, Park K T.  Scr Mater, 1996; 34: 857

[4] Taleff E M, Sridhar G B, Pourladian B.  Wire J Int, 2003; 36: 73

[5] Bae C M, Nam W J, Lee C S.  Metall Mater Trans, 2000; 31A: 2665

[6] Jang Y S, Phaniraj M P, Kim D I, Shim J H, Huh M Y.  Metall Mater Trans, 2010; 41A: 2078

[7] Kanetsuki Y, Ibaraki N, Ashida S.  ISIJ Int, 1991; 31: 304

[8] Taleff E M, Syn C K, Lesuer D R, Sherby D.  Metall Mater Trans, 1996; 27A: 111

[9] Peng H F, Song X Y, Gao A G, Ma X L.  Mater Lett, 2005; 59: 3330

[10] Zhang Y D, Esling C, Gong M L, Vincent G, Zhao X, Zuo L.  Scr Mater, 2006; 54: 1897

[11] San Martin D, Rivera-Diaz-del-Castillo P E J, Garcia-de-Andres C.  Scr Mater, 2008; 58: 926

[12] Elwazri A M, Wanjara P, Yue S.  Metall Mater Trans, 2005; 36A: 2297

[13] Li Y, Yang Z M.  Acta Metall Sin, 2010; 46: 1501

(李翼, 杨忠民. 金属学报, 2010; 46: 1501)

[14] Han K, Mottishaw T D, Smith G, Edmonds D V, Stacey A G.  Mater Sci Eng, 1995; A190: 207

[15] Liu Z C.  Heat Treat Met, 2007; 33: 1

(刘宗昌. 金属热处理, 2007; 33: 1)

[16] Roberts G A, Mehl R F.  Trans AIME, 1943; 154: 318

[17] Porter D A, Easterling K E, Sherif M Y, translated by Chen L, Yu Y N.  Phase Transformation in Metals and

Alloys. Beijing: Higher Education Press, 2011: 63

(Porter D A, Easterling K E, Sherif M Y 著, 陈冷, 余永宁 译. 金属和合金中的相变. 北京: 高等教育出版社, 2011: 63)

[18] Borchardt F S.  Master Thesis, University of Pittsburgh, 2004

[19] Scheil E.  Arch Eisenhuttenw, 1935; 8: 565

[20] Brandt W H.  Trans AIME, 1946; 167: 550

[21] Hull F C, Colton R A, Mehl R F.  Trans AIME, 1942; 50: 185

[22] Guo N.  PhD Dissertation, Chongqing University, 2012

(郭宁. 重庆大学博士学位论文, 2012)

[23] Howell P R.  Mater Charact, 1998; 40: 227

[24] Elwazri A M, Wanjara P, Yue S.  Mater Sci Eng, 2005; A404: 91

[25] Han K, Smith G, Edmonds D V.  Metall Mater Trans, 1995; 26A: 1617

[26] Han K, Edmonds D V, Smith G.  Metall Mater Trans, 2001; 32A: 1313

[27] Nesterov D, Levchenko N, Sapozhkov V, Shevchenko A.  Steel Trans, 1992; 22: 191

[28] Hung C Y, Spanos G, Rosenberg R O, Kral M V.  Acta Mater, 2002; 50: 3781

[29] Kral M V, Spanos G.  Acta Mater, 1999; 47: 711

[30] Kral M V, Spanos G.  Acta Mater, 2003; 51: 301

[31] Spanos G, Kral M V.  Int Mater Rev, 2009; 54: 19

[32] Kral M V, Spanos G.  Scr Mater, 1997; 36: 875

[33] Kral M V, Mangan M A, Spanos G, Rosenberg R O.  Mater Charact, 2000; 45: 17
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[3] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[5] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[8] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[9] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[10] HUA Yu, CHEN Jianguo, YU Liming, SI Yonghong, LIU Chenxi, LI Huijun, LIU Yongchang. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel[J]. 金属学报, 2022, 58(2): 141-154.
[11] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[12] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[13] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[14] LI Juan, ZHAO Honglong, ZHOU Nian, ZHANG Yingzhe, QIN Qingdong, SU Xiangdong. Diffusion Bonding of CoCrFeNiCu High-Entropy Alloy to 304 Stainless Steel[J]. 金属学报, 2021, 57(12): 1567-1578.
[15] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
No Suggested Reading articles found!