Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (5): 576-582    DOI: 10.3724/SP.J.1037.2012.00703
Current Issue | Archive | Adv Search |
FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH-STRENGTH PIPELINE STEEL
BI Zongyue1,2), YANG Jun1,2), NIU Jing3), ZHANG Jianxun3)
1) National Engineering Technology Research Center for Petroleum and Natural Gas Tubular Goods,Baoji 721008
2) Steel Pipe Research Institute of Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008
3) School of Materials Science and Engineering, Xi'an Jiao Tong University, Xi'an 710065
Cite this article: 

BI Zongyue, YANG Jun, NIU Jing, ZHANG Jianxun. FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH-STRENGTH PIPELINE STEEL. Acta Metall Sin, 2013, 49(5): 576-582.

Download:  PDF(3553KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fracture toughness of base metal, weld seam and heat-affected-zone (HAZ) in X100 high-strength pipeline steel welded joints was investigated by three-point crack tip opening displacement (CTOD) test. Microstructure and inclusion near fracture zones were observed by means of SEM and TEM. The results indicated that fracture toughness of X100 high-strength pipeline steel welded joints was greatly influenced by test temperature. At the same temperature, the numerical values of apparent crack initiation δ0.05, conditional crack initiation δ0.2 and δ0.2BL of base metal are higher than that of weld seam and HAZ, and low temperature fracture toughness of base metal is better than those of weld seam and HAZ. With temperature decreasing, the fracture toughness of base metal, weld seam and HAZ decreased. The microstructure of near fracture zones of base metal specimen was composed of granular bainite (GB), a small quasi polygonal ferrite (QF) and lath bainite ferrite (BF), and the fine and equally dispersed M-A structure distributed on the grain boundary. The microstructure of near fracture zones of weld seam specimen was composed of acicular ferrite (AF), and the form of M-A constituents shows diversity, sharp-angled clearly. The microstructure  of near fracture zones of coarse-grain HAZ was composed of GB and parallel LBF, and the square, wedged and bar M-A constituents distributed on the interior of grain, grain boundary and lath boundary. The poor fracture toughness of weld seam and HAZ specimen results from large size and cusp type M-A structure. While the higher distribution of inclusion in weld seam makes fracture toughness worse.

Key words:  X100 pipeline steel      welded joint      fracture toughness      crack tip opening displacement (CTOD)     
Received:  27 November 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00703     OR     https://www.ams.org.cn/EN/Y2013/V49/I5/576

[1] Pan J H.  Weld Pipe, 2008; 31(4): 5


(潘家华. 焊管, 2008; 31(4): 5)

[2] Li H L, Ji L K, Xie L H.  J Hebei Univ Sci Technol, 2006; 27: 1

(李鹤林, 吉玲康, 谢丽华. 河北科技大学学报, 2006; 27: 1)

[3] Zhang B, Qian C W, Wang Y M, Zhang Y Z.  Petro Eng Cons, 2012; 38: 1

(张斌, 钱成文, 王玉梅, 张玉志. 石油工程建设, 2012; 38: 1)

[4] Takuya H, Eiji T, Hiroshi M, Hitoshi A.

 X100/X120 Level High Performance Pipeline Steel International High--Level Forum.

Beijing: China Machine Press, 2005: 136

[5] Yoo J Y, Ahn S S, Seo D H, Song W H, Kang K B.  Mater Manuf Process, 2011; 26: 154

[6] Wang Y Q, Wu Y M, Shi Y J, Jiang J J.  Eng Mech, 2006; 23: 74

(王元清, 武延民, 石永久, 江见鲸. 工程力学, 2006; 23: 74)

[7] Xiao G C, Jing H Y, Xu L Y.  J Mech Eng, 2011; 47: 26

(肖光春, 荆洪阳, 徐连勇. 机械工程学报, 2011; 47: 26)

[8] Zhou M, Du L X, Liu X H, Wang Y X.  J Plast Eng, 2010; 17: 108

(周民, 杜林秀, 刘相华, 王悦新. 塑性工程学报, 2010; 17: 108)

[9] Yu Z F, Shi H, Tong L, Liu R.  Oil Gas Storage Transp, 2010; 29: 143

(余志峰, 史航, 佟雷, 刘任. 油气储运, 2010; 29: 143)

[10] Li H L, Li X, Ji L K, Chen H D.  Weld Pipe, 2007; 30(5): 5

(李鹤林, 李霄, 吉玲康, 陈宏达. 焊管, 2007; 30(5): 5)

[11] Feng Y R, Diao S, Huo C Y, Xion Q R, Zhu W D, Li N.  China Saf Sci J, 2007; 17: 159

(冯耀荣, 刁顺, 霍春勇, 熊庆人, 朱维斗, 李年. 中国安全科学学报, 2007; 17: 159)

[12] Zhong Y, Xiao F R, Zhang J W, Shan Y Y, Wang W, Yang K.  Acta Mater, 2006; 54: 435

[13] Yang F P, Luo J H, Zhang H, Zhang G L, Zhang Y.  J Plast Eng, 2011; 18: 103

(杨锋平, 罗金恒, 张华, 张广利, 张奕. 塑性工程学报, 2011; 18: 103)

[14] Luo J W, Qin H T.  Weld Pipe, 2009; 32(7): 33

(骆建武, 覃海涛. 焊管, 2009; 32(7): 33)

[15] Shin S Y, Woo K J, Hwang B, Kim S, Lee S.  Metall Mater Trans, 2009; 40A: 867

[16] Hu C X.  Special Functional Coating. Beijing: Beijing University

of Technology Press, 1989: 1

(胡传析. 特种功能涂层. 北京: 北京工业大学出版社, 1989: 1)

[17] British Standard Institution.  BS 7448, London: British Standard, 1991

[18] Hwang B, Kim Y G, Lee S, Kim Y M, Kim N J, Yoo J Y.  Metall Mater Trans, 2005; 36A: 2107

[19] Xu X L, Zhao K, Zhao D, Wang W F.  J Iron Steel Res Int, 2011; 18: 487

[20] Xu D Y, Yu H.  Proceeding of the 10th International Conference on Steel Rolling.

Beijing: Metallurgical Industry Press, 2010: 134

[21] Bi Z Y, Jing X T, Xu X L, Jin S L.  J Iron Steel Res, 2010; 22: 27

(毕宗岳, 井晓天, 徐学利, 金时麟. 钢铁研究学报, 2010; 22: 27)

[22] Chen Y Q, Du Z Y, Xu L H.  Trans China Weld Inst, 2010; 31(5): 101

(陈延清, 杜则裕, 许良红. 焊接学报, 2010; 31(5): 101)

[23] Zhang X Y, Gao H L, Zhuang C J, Ji L K.  Trans China Weld Inst, 2010; 31(3): 29

(张骁勇, 高惠临, 庄传晶, 吉玲康. 焊接学报, 2010; 31(3): 29)

[24] Shu W, Wang X M, Li S R, He X L.  Acta Metall Sin, 2011; 47: 435

(舒玮, 王学敏, 李书瑞, 贺信莱. 金属学报, 2011; 47: 435)

[25] Chen Y Q.  PhD Dissertation, Tianjing University, 2010

(陈延清. 天津大学博士学位论文, 2010)

[1] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[2] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[3] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[4] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[5] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[7] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[8] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[9] Yadong LI,Qiang LI,Xiao TANG,Yan LI. Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints[J]. 金属学报, 2019, 55(6): 801-810.
[10] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[11] Yizhe LI, Baoming GONG, Xiuguo LIU, Dongpo WANG, Caiyan DENG. Out-of-Plane Constraint Effect on the Fracture Toughness of Single Edge Notch Tension Specimens[J]. 金属学报, 2018, 54(12): 1785-1791.
[12] Xiaofeng HU, Haichang JIANG, Mingjiu ZHAO, Desheng YAN, Shanping LU, Lijian RONG. Microstructure and Mechanical Properties of Welded Joint of a Fe-Cr-Ni-Mo Steel with High-Strength and High-Toughness[J]. 金属学报, 2018, 54(1): 1-10.
[13] Xiaoyu ZHAO, Feng HUANG, Lijun GAN, Qian HU, Jing LIU. Hydrogen-Induced Cracking Susceptibility and Hydrogen Trapping Efficiency of the Welded MS X70 Pipeline Steel in H2S Environment[J]. 金属学报, 2017, 53(12): 1579-1587.
[14] Xiangli FENG,Lei WANG,Yang LIU. STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS[J]. 金属学报, 2016, 52(7): 787-796.
[15] Kun LI,Jiguo SHAN,Chunxu WANG,Zhiling TIAN. STRENGTH AND TOUGHNESS OF T250 MARAGING STEEL JOINT HYBRID-TREATED WITH LASER WELDING AND AGING[J]. 金属学报, 2015, 51(8): 904-912.
No Suggested Reading articles found!