Cu single crystal,fatigue dislocation structure,thermal stability,,recrystallization,annealing twin," /> Cu single crystal,fatigue dislocation structure,thermal stability,,recrystallization,annealing twin,"/> Cu single crystal,fatigue dislocation structure,thermal stability,,recrystallization,annealing twin,"/> 一个共面双滑移取向Cu单晶体疲劳位错结构的热稳定性研究
Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (1): 107-114    DOI: 10.3724/SP.J.1037.2012.00411
Current Issue | Archive | Adv Search |
INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN A DOUBLE-SLIPORIENTED Cu SINGLE CRYSTAL
GUO Weiwei1, QI Chengjun1, LI Xiaowu1,2
1. Institute of Materials Physics and Chemistry, College of Sciences, Northeastern University, Shenyang 110819
2. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819
Cite this article: 

GUO Weiwei, QI Chengjun, LI Xiaowu. INVESTIGATIONS ON THERMAL STABILITY OF FATIGUE DISLOCATION STRUCTURES IN A DOUBLE-SLIPORIENTED Cu SINGLE CRYSTAL. Acta Metall Sin, 2013, 49(1): 107-114.

Download:  PDF(1141KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Although comprehensive research findings of the cyclic deformation and dislocation structures of Cu single crystals with various orientations have been well established over the four decades, studies on the thermal stability of dislocation structures in fatigued Cu single crystals are still rarely reported. In the present work, [233] Cu single crystals oriented for coplanar double slip were firstly cyclically deformed at different plastic strain amplitudes γpl up to saturation, and then annealed at different temperatures for 30 min.The dislocation structures induced by cyclic deformation as well as the microstructural changes resulting from subsequent annealing treatments were detected by using the electron channeling contrast (ECC) technique in SEM and TEM. It was found that the dislocation structures have undergone an obvious process of recovery at 300 ℃,and the recrystallization even partially takes place in the sample fatigued at highγpl. However,at 500 and 800 ℃, the violent recrystallization takes place in all crystals and a large number of annealing twins have appeared. As the plastic strain amplitude and accumulated plastic strain increase, the degree of strain concentration would be significantly aggravated, providing a higher local strain energy for the occurrence of recrystallization and the initiation of twins, so that the recrystallization takes place more noticeably, and annealing twins become coarser and the number of them increases notably. The formation of annealing twins is closely related to the appearance of stacking faults. The DSC measurements demonstrated that the recrystallization process and the formation process of twins should be a gradually-developing process, instead of a suddenly-forming process.

 
Key words:  Cu single crystal')" href="#">     
Received:  10 July 2012     
Service
E-mail this article Cu single crystal|fatigue dislocation structure|thermal stability,|recrystallization|annealing twin”. Please open it by linking:https://www.ams.org.cn/EN/abstract/abstract20993.shtml" name="neirong"> Cu single crystal|fatigue dislocation structure|thermal stability,|recrystallization|annealing twin">
Add to citation manager
E-mail Alert
RSS
Articles by authors
GUO Weiwei
QI Chengjun
LI Xiaowu

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00411     OR     https://www.ams.org.cn/EN/Y2013/V49/I1/107

 


[1] Mughrabi H. Mater Sci Eng, 1978; 33: 207

[2] Jin N Y, Winter A T. Acta Metall, 1984; 32: 989

[3] Basinski Z S, Basinski S J. Prog Mater Sci, 1992; 36: 89

[4] Suresh S. Fatigue of Materials. 2nd Ed., London: Cambridge University Press, 1998: 28

[5] Li X W. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 1998

(李小武. 中国科学院金属研究所博士学位论文, 沈阳, 1998)

[6] Li X W, Wang Z G, Li S X. Philos Mag Lett, 1999; 79: 715

[7] Zhang J X, Jiang Y Y. Int J Plast, 2005; 21: 2191

[8] Zhang J X, Jiang Y Y. Acta Mater, 2007; 55: 1831

[9] Li P, Li S X, Wang Z G, Zhang Z F. Prog Mater Sci, 2011; 56: 328

[10] Steckmeyer A, Sauzay M, Weidner A, Hieckmann E. Int J Fatigue, 2012; 40: 154

[11] Ackermann F, Kubin L P, Lepinous J, Mughrabi H. Acta Metall, 1984; 32: 715

[12] Li X W, Hu Y M, Wang Z G. Mater Sci Eng, 1998; A248: 299

[13] Li X W, Zhang Z F, Wang Z G, Li S X, Umakoshi Y. Defect Diffusion Forum, 2001; 188-199: 153

[14] Li X W, Umakoshi Y, Gong B, Li S X, Wang Z G. Mater Sci Eng, 2002; A333: 51

[15] Li P, Zhang Z F, Li X W, Li S X, Wang Z G. Acta Mater, 2009; 57: 4845

[16] Zhou Y, Li X W, Zhang G P, Zhang Z F. Mater Sci Technol, 2009; 17: 649

(周杨, 李小武, 张广平, 张哲峰. 材料科学与工艺, 2009; 17: 649)

[17] Li X W, Zhou Y, Guo W W, Zhang G P. Cryst Res Technol, 2009; 44: 315

[18] Guo W W, Wang X M, Li X W. Mater Trans, 2010; 51: 887

[19] Li P, Li S X, Wang Z G, Zhang Z F. Acta Mater, 2010; 58: 3281

[20] Tabata T, Fujita H, Hiraoka M, Onishi I C. Philos Mag, 1983; 47A: 841

[21] Wang Z R. Scr Mater, 1998; 39: 493

[22] Chen S, Gottstein S. Mater Sci Eng, 1989; 110: 9

[23] Kuhlman-Wilsdorf D. Trans Met Soc AIME, 1962; 224: 1047

[24] Glazov M, Llanes L M, Laird C. Phys Stat Sol, 1995; 149A: 297

[25] Li X W, Wang Z G, Li S X. Mater Sci Eng, 1999; A260: 132

[26] Li X W, Wang Z G, Zhang Y W, Li S X, Umakoshi Y. Phys Stat Sol, 2002; 191A: 97

[27] Zhou Y, Li X W, Yang R Q. Int J Mater Res, 2008; 99: 958

[28] Kopzky C V, Novikov V Y, Fionova L K. Acta Metall, 1985; 33: 873

[29] Yang G, Sun L J, Zhang L N, Wang L M, Wang C. Chin J Iron Steel Res, 2009; 21: 39

(杨钢, 孙利军, 张丽娜, 王立民, 王昌. 钢铁研究学报, 2009; 21: 39)

[30] Zhu R, Li S X, Li Y, Li M Y, Chao Y S. Acta Metall Sin, 2004; 40: 467

(朱荣, 李守新, 李勇, 李明扬, 晁月盛. 金属学报, 2004; 40: 467)

[31] Guo W W, Ren H, Qi C J, Wang X M, Li X W. Acta Phys Sin, 2012; 61: 156201-1

(郭巍巍, 任焕, 齐成军, 王小蒙, 李小武. 物理学报, 2012; 61: 156201-1)

[32] Xiao S H, Guo J D, Wu S D, He G H, Li S X. Acta Metall Sin, 2002; 38: 161

(肖素红, 郭敬东, 吴世丁, 何冠虎, 李守新. 金属学报, 2002; 38: 161)

[33] Pande C S, Imam M A, Rath B B. Metall Trans, 1990; 21A: 2891

[34] Mahajan S, Pande C S, Imam M A, Rath B B. Acta Mater, 1997; 45: 2633

[35] Xia S, Li H, Zhou B X, Chen W J. Chin J Nature, 2010; 32: 94

(夏爽, 李慧, 周邦新, 陈文觉. 自然杂志, 2010; 32: 94)

 
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[5] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[6] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[7] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[8] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[9] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[11] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[13] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[14] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[15] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
No Suggested Reading articles found!