Zr-1Nb alloy,Bi,corrosion resistance,microstructure," /> Zr-1Nb alloy,Bi,corrosion resistance,microstructure,"/> Zr-1Nb alloy,Bi,corrosion resistance,microstructure,"/> 添加Bi对Zr-1Nb合金在360 ℃和18.6 MPa去离子水中耐腐蚀性能的影响
Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (1): 51-57    DOI: 10.3724/SP.J.1037.2012.00378
Current Issue | Archive | Adv Search |
EFFECT OF Bi ADDITION ON THE CORROSION RESISTANCE OF Zr-1Nb ALLOY IN DEIONIZED WATER AT 360 ℃ AND 18.6 MPa
ZHU Li1, 2, YAO Meiyi1, 2, SUN Guocheng1, 2,CHEN Wenjue 1, 2, ZHANG Jinlong1, 2,ZHOU Bangxin1, 2
1. Laboratory for Microstructures, Shanghai University, Shanghai 200444
2. Institute of Materials, Shanghai University, Shanghai 200072
Cite this article: 

ZHU Li, YAO Meiyi, SUN Guocheng,CHEN Wenjue, ZHANG Jinlong,ZHOU Bangxin. EFFECT OF Bi ADDITION ON THE CORROSION RESISTANCE OF Zr-1Nb ALLOY IN DEIONIZED WATER AT 360 ℃ AND 18.6 MPa. Acta Metall Sin, 2013, 49(1): 51-57.

Download:  PDF(1023KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Bi contents on the corrosion resistance of Zr-1Nb-xBi (x=0.05-0.3, mass fraction, %) was investigated in deionized water at 360 ℃ and 18.6 MPa by autoclave tests. The results show that the corrosion resistance of Zr-1Nb alloy can be improved by adding Bi,and the more the Bi content is, the better the corrosion resistance is.TEM and EDS analyses on the microstructures of the alloys show that there are two types of second phase particles (SPPs), including ZrNbFe and β-Nb. The Bi contents have little effect on the type, size and amount of SPPs, 0.3%Bi can be completely dissolved in α-Zr matrix and has no influence on the solution content of Nb inα-Zr matrix. From the fracture and inner surface morphology of oxide films observed by SEM, it can be seen that the Bi dissolved in theα-Zr could noticeably slow down the microstructural evolution of oxide film, including the propagation of micro--cracks and the transformation from columnar grains to equiaxed grains in the oxide film.

Key words:  Zr-1Nb alloy')" href="#">     
Received:  27 June 2012     
Service
E-mail this article Zr-1Nb alloy|Bi|corrosion resistance|microstructure”. Please open it by linking:https://www.ams.org.cn/EN/abstract/abstract20985.shtml" name="neirong"> Zr-1Nb alloy|Bi|corrosion resistance|microstructure">
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHU Li
YAO Meiyi
SUN Guocheng
CHEN Wenjue
ZHANG Jinlong
ZHOU Bangxin

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00378     OR     https://www.ams.org.cn/EN/Y2013/V49/I1/51

 


[1] Motta A T, Yilmazbayhan A, Gomes da Silva M J, Comstock R J, Was G S, Busby J T, Gartner E, Peng Q J,Jeong Y H, Park J Y. J Nucl Mater, 2007; 371: 61

[2] Cox B. J Nucl Mater, 2005; 336: 331

[3] Billot P, Yagnik S, Ramasubramanian N, Peybernes J,Pecheur D. In: Moan G D, Rudling P eds., Zirconium in the Nuclear Industry: 13th International Symposium, ASTM STP 1423,Annecy: ASTM International, 2002: 169

[4] Mardon J P, Charquet D, Senevat J. In: Sabol G P, Moan G D eds., Zirconium in the Nuclear Industry: 12th International Symposium, ASTM STP 1354, Toronto: ASTM International, 2000: 505

[5] Park J Y, Yoo S J, Choi B K, Jeong Y H. J Nucl Mater,2008; 374: 343

[6] Hong H S, Moon J S, Kim S J, Lee K S. J Nucl Mater, 2001; 297: 113

[7] Yao M Y, Li S L, Zhang X, Peng J C, Zhou B X, Zhao X S, Shen J Y. Acta Metall Sin, 2011; 47: 865

 (姚美意, 李士炉, 张欣, 彭剑超, 周邦新, 赵旭山, 沈剑韵. 金属学报, 2011; 47: 865)

[8] Li S L, Yao M Y, Zhang X, Geng J Q, Peng J C, Zhou B X. Acta Metall Sin, 2011; 47: 163

 (李士炉, 姚美意, 张欣, 耿建桥, 彭剑超, 周邦新. 金属学报, 2011; 47: 163)

[9] Chen H M, Ma C L, Bai X D. The Corrosion and Protection of Nuclear Materials. Beijing: Atomic Energy Press, 1984: 1

 (陈鹤鸣, 马春来, 白新德编著. 核反应堆材料腐蚀及其防护.北京: 原子能出版社, 1984: 1)

[10] Li P Z, Li Z K, Xue X Y, Liu J Z. Rare Met Mater Eng,

1998; 27: 356

(李佩志, 李中奎, 薛祥义, 刘建章. 稀有金属材料与工程, 1998; 27: 356)

[11] Yao M Y, Zou L H, Xie X F, Zhang J L, Peng J C, Zhou B X.

 Acta Metall Sin, 2012; 48: 1098

 (姚美意, 邹玲红, 谢兴飞, 张金龙, 彭剑超, 周邦新. 金属学报, 2012; 48: 1098)

[12] Yao M Y, Zhou B X, Li Q, Liu W Q, Geng X, Lu Y P. J Nucl Mater,2008; 374: 197

[13] Kim Y S, Kim S K, Bang J G, Jung Y H. J Nucl Mater,2000; 279: 335

[14] Comstock R J, Schoenberger G, Sabol G P. In: Bradley E R,Sabol G P eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Garmisch--Partenkirchen: ASTM International, 1996: 710

[15] Park J Y, Choi B K, Yoo S J, Jeong Y H. J Nucl Mater,2006; 359: 59

[16] Anada H, Takeda K. In: Bradley E R, Sabol G P eds., Zirconium in

the Nuclear Industry: 11th International Symposium, ASTM STP 1295,

Garmisch--Partenkirchen: ASTM International, 1996: 35

[17] Wadman B, Lai Z, Andren H O, Nystrom A L, Rudling P, Pettersson H I.In: Garde A M, Bradley E R eds., Zirconium in the Nuclear Industry: 10th International Symposium, ASTM STP 1245, Baltimore M D: ASTM International, 1994: 579

[18] Zhou B X, Li Q, Yao M Y, Liu W Q. Nucl Power Eng, 2005; 26: 364

 (周邦新, 李强, 姚美意, 刘文庆. 核动力工程, 2005; 26: 364)

[19] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng,

2006; 35: 1009

 (周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料工程, 2006; 35: 1009)

[20] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B,

Limback M eds., Zirconium in the Nuclear Industry: 15th International

Symposium, ASTM STP 1505, Sunriver Oregon: ASTM International, 2008: 371

[21] Zhou B X, Li Q, Huang Q, Miao Z, Zhao W J, Li C. Nucl Power Eng, 2000; 21: 339

 (周邦新, 李强, 黄强, 苗志, 赵文金, 李聪.核动力工程, 2000; 21: 339)

[22] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. Corros Prot,

2009; 30: 589

 (周邦新, 李强, 姚美意, 刘文庆, 褚于良. 腐蚀与防护, 2009; 30: 589)

[23] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G. In: Limback M,Barberis P eds., Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP 1529, Chengdu: ASTM International, 2010: 620

[24] Zhong X Y, Yang B, Li M C, Yao M Y, Zhou B X, Shen J N. Rare Met

Mater Eng, 2010; 39: 2167

 (钟祥玉, 杨波, 李谋成, 姚美意, 周邦新. 沈嘉年. 稀有金属材料工程,

2010; 39: 2167)

[25] Weidinger H G, Ruhmann H, Cheliotis G, Maguire M, Yau T L.In: Eucken C M, Garde A M eds., Zirconium in the Nuclear Industry:9th International Symposium, ASTM STP 1132, Kobe: ASTM International,1991: 499
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[6] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[7] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[8] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[9] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[13] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
No Suggested Reading articles found!