Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1487-1494    DOI: 10.3724/SP.J.1037.2012.00434
Current Issue | Archive | Adv Search |
STUDY ON THE CORROSION RESISTANCE OF Zr–0.7Sn–0.35Nb–0.3Fe–xGe ALLOY IN LITHIATEDWATER AT HIGH TEMPERATURE UNDER HIGH PRESSURE
XIE Xingfei 1,2, ZHANG Jinlong 1,2, ZHU Li 1,2, YAO Meiyi 1,2, ZHOU Bangxin 1,2, PENG Jianchao 1,2
1. Laboratory for Microstructures, Shanghai University, Shanghai 200444
2. Institute of Materials, Shanghai University, Shanghai 200072
Cite this article: 

XIE Xingfei ZHANG Jinlong ZHU Li YAO Meiyi ZHOU Bangxin PENG Jianchao. STUDY ON THE CORROSION RESISTANCE OF Zr–0.7Sn–0.35Nb–0.3Fe–xGe ALLOY IN LITHIATEDWATER AT HIGH TEMPERATURE UNDER HIGH PRESSURE. Acta Metall Sin, 2012, 48(12): 1487-1494.

Download:  PDF(3674KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion resistance of Zr–0.7Sn–0.35Nb–0.3Fe–xGe (x=0.05, 0.1, 0.2, mass fraction, %) alloys was investigated in lithiated water with 0.01 mol/L LiOH at 360 /18.6 MPa by autoclave tests. The microstructures of the alloys and oxide films on the corroded specimens were observed by TEM and SEM. The results show that the corrosion resistance of the Zr–0.7Sn–0.35Nb–0.3Fe alloys in lithiated water at high temperature under high pressure is markedly improved by Ge addition. The alloy with 0.1%Ge shows the best corrosion resistance. In Zr–0.7Sn–0.35Nb–0.3Fe–xGe alloys, there exists fine Zr(Fe, Cr, Nb)2 and Zr(Fe, Cr, Nb, Ge)2 second phase particles (SPPs) with a close–packed hexagonal crystal structure (hcp) and coarse Zr3Ge SPPs with a tetragonal crystal structure (TET). The oxide films formed on the Zr–0.7Sn–0.35Nb–0.3Fe–0.1Ge alloys corroded for 220 d are compact and thin. The micro–pores and micro–cracks are hardly detected and many ZrO2 columnar grains exist in the oxide films formed on the Zr–0.7Sn–0.35Nb–0.3Fe–0.1Ge alloys. This indicates that the suitable amount of Ge could not only delay the process that the vacancies diffuse to form micro–pores and micro–pores develop to form micro–cracks, but also could retard the evolution from ZrO2 columnar grains to ZrO2 equiaxed grains.

Key words:  zirconium alloy      Ge      corrosion resistance      microstructure      oxide film     
Received:  19 July 2012     
Fund: 

Supported by National Natural Science Foundation of China (No.50971084) and National Advanced Pressurized Water Reactor Project of China (No.2011ZX06004–023)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00434     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1487

[1] Liu J Z. Structure Nuclear Materials. Beijing: Chemical Industry Press, 2007: 19

(刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 19)

[2] Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H. Atom Energ Sci Technol, 2005; 39(suppl):1

(赵文金, 周邦新, 苗志, 彭倩, 蒋有荣, 蒋宏曼, 庞华. 原子能科学技术, 2005; 39(增刊): 1)

[3] Nikulina A V, Markelov V A. In: Bradley E R, Sabol G P eds., Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Garmisch

Partenkirchen Germany: ASTM International, 1996: 785

[4] Sabol G P, Comstock R J. In: Garde A M, Bradley E R eds., Zirconium in the Nuclear Industry: 10th International Symposium, ASTM STP 1245, Baltimore, MD:

ASTM International, 1994: 724

[5] Jung Y I, Lee M H, Kim H G, Park J Y, Jeong Y H. J Alloys Compd, 2009; 479: 423

[6] Yang W D. Reactor Materials Science. 2nd Ed., Beijing: Atomic Energy Press, 2006: 260

(杨文斗. 反应堆材料学. 第二版, 北京: 原子能出版社, 2006: 260)

[7] Liu W Q, Zhu X Y, Wang X J, Li Q, Yao M Y, Zhou B X. Atom Energ Sci Technol, 2010; 44: 1477

(刘文庆, 朱晓勇, 王晓娇, 李强, 姚美意, 周邦新. 原子能科学技术, 2010; 44: 1477)

[8] Kim J M, Jeong Y H, Kim I S. J Nucl Mater, 2000; 280: 235

[9] Liu W Q, Li Q, Zhou B X, Yao M Y. Nucl Power Eng, 2003; 24(1): 33

(刘文庆, 李强, 周邦新, 姚美意. 核动力工程, 2003; 24(1): 33)

[10] Wang J K. Modern Ge Metallurgy. Beijing: Metallurgy Industry Press, 2005: 58

(王吉坤. 现代锗冶金. 北京: 冶金工业出版社, 2005: 58)

[11] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. In: Kammenzind B, Limback M eds., Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505,

West Conshohochen: American Society for Testing and Materials, 2009: 360

[12] Schaffer M, Schaffer B, Ramasse Q. Ultramicroscopy, 2012; 114: 62

[13] Zhou B X, Yao M Y, Li Q, Xia S, Liu W Q, Chu Y L. Rare Met Mater Eng, 2007; 36: 1317

(周邦新, 姚美意, 李强, 夏爽, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1317)

[14] Charquet D, Hahn R, Ortlib E. In: Van Swam L F P, Eucken C M eds., Zircorium in the Nuclear Industry: 8th International Symposium, ASTM STP 1023, Philadelphia:

ASTM International, 1989: 405

[15] Anada H, Takeda K. In: Sabol G P, Bradley E R eds., Zircorium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295, Ann Arbor: ASTM International,

1996: 35

[16] Wadman B, Lai Z, Andren H O, Nystrom A L, Rudling P, Pettersson H. In: Garde A M, Bradley E R eds., Zirconium in the Nuclear Industry: 10th International Symposium

ASTM STP 1245, Ann Arbor: ASTM International, 1994: 579

[17] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G. In: Limback M, Barb´eris P eds., Zirconium in the Nuclear Industry: 16th International Symposium, ASTM

STP 1529, Bridgeport: ASTM International, 2011: 620

[18] Zhang X, Yao M Y, Li S L, Zhou B X. Acta Metall Sin, 2011; 47: 1112

(张欣, 姚美意, 李士炉, 周邦新. 金属学报, 2011; 47: 1112)

[19] Zhou B X, Li Q, Liu W Q, Yao M Y, Chu Y L. Rare Met Mater Eng, 2006; 35: 1009

(周邦新, 李强, 刘文庆, 姚美意, 褚于良. 稀有金属材料与工程, 2006; 35: 1009)

[20] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L. Corros Prot, 2009; 30: 589

(周邦新, 李强, 姚美意, 刘文庆, 褚于良. 腐蚀与防护, 2009; 30: 589)

[21] Li T F. Metal High Temperature Oxidation and Thermal Corrosion. Beijing: Chemical Industry Press, 2003: 51

(李铁藩. 金属高温氧化和热处理. 北京: 化学工业出版社, 2003: 51)

[22] Yang X L, Zhou B X, Jiang Y R, Li C. Nucl Power Eng, 1994; 15(1): 79

(杨晓林, 周邦新, 蒋有荣, 李聪. 核动力工程, 1994; 15(1): 79)

[23] Toffolon–Masclet C, Brachet J C, Jago G. J Nucl Mater, 2002; 305: 224

[24] Cao X X, Yao M Y, Peng J C, Zhou B X. Acta Metall Sin, 2011; 47: 882

(曹潇潇, 姚美意, 彭剑超, 周邦新. 金属学报, 2011; 47: 882)

[25] Yilmazbayhan A, Breval E. J Nucl Mater, 2006; 349: 265

[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[10] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[11] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[12] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[13] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!