Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (12): 1495-1502    DOI: 10.3724/SP.J.1037.2012.00309
Current Issue | Archive | Adv Search |
EFFECTS OF SHEWANELLA ALGAE ON CORROSION OF Zn–Al–Cd ANODE
ZHANG Jie 1, SONG Xiuxia 1,2, LUAN Xin 1,3, SUN Caixia 1,4, DUAN Jizhou 1,HOU Baorong 1
1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071
2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306
3. College of Marine Life Sciences, Ocean University of China, Qingdao 266100
4. Chemistry and Chemical Engineering College, Yantai University, Yantai 264005
Cite this article: 

ZHANG Jie SONG Xiuxia LUAN Xin SUN Caixia DUAN Jizhou HOU Baorong . EFFECTS OF SHEWANELLA ALGAE ON CORROSION OF Zn–Al–Cd ANODE. Acta Metall Sin, 2012, 48(12): 1495-1502.

Download:  PDF(1630KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Shewanella is a typical iron–reducing bacteria which can reduce insoluble ferric iron to soluble ferrous iron and consume oxygen, being considered as the reasons of corrosion inhibition. The main study on Shewanella algae (SA) is the degradation of environmentally harmful organic compounds and heavy metals, and there are very few reports on the interaction of metal corrosion and SA. In this paper, the bacteria isolated from yellow rust layer were identified as SA by using molecular biology techniques. The growth curve of SA was determined with spectrophotography. The results showed that the growth curve was divided into three phases: exponential growth phase, steady phase and decay phase. The effects of SA on corrosion of Zn–Al–Cd anode were investigated by using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and fluorescence microscopy (FM).The results showed that corrosion potential for samples exposed to the culture medium containing SA was higher than that for samples exposed to the sterile culture medium during the whole experiment. Rct value in the culture medium containing SA was much greater than that of anode in the sterile culture medium. The bacteria could inhibit the corrosion of the specimen. The reason was that a biofilm layer was formed on the sample surface and the oxygen was consumed through the metabolic activities of bacteria in the culture medium containing bacteria. The biofilm layer was formed on the 5th day in the culture medium containing bacteria. While in bacteria–free system, obvious corrosion pits and white corrosion products were seen on the sample surface. The complete biofilm was formed on 7th day, and it detached from the sample on 11th day because of the exhaustion of nutrients and oxygen, showing that the biofilm formation had a great relationship with the presence of nutrients and oxygen.

Key words:  Shewanella      sacrificial anode      electrochemical impedance spectroscopy      molecular biology      corrosion     
Received:  28 May 2012     
Fund: 

Supported by National Natural Science Foundation of China (No.41006054) and the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2–EW–205)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00309     OR     https://www.ams.org.cn/EN/Y2012/V48/I12/1495

[1] Wu J Y, Chai K, Xiao W L, Yang Y H, Han E H. Acta Metall Sin, 2010; 46: 755

(吴进怡, 柴 柯, 肖伟龙, 杨雨辉, 韩恩厚. 金属学报, 2010; 46: 755)

[2] Dumas C, Basseguy R, Bergel A. Electrochim Acta, 2008; 53: 5235

[3] Mansfeld F. Electrochim Acta, 2007; 52: 7670

[4] MacDonell M T, Colwell R R. Int J Syst Evol Microbiol, 1985; (6): 171

[5] Manohar A K, Bretschger O, Nealson K H, Mansfeld F. Bioelectrochem, 2008; 72: 149

[6] Manohar A K, Mansfeld F. Electrochim Acta, 2009; 54: 1664

[7] Mohan S V, Raghavulu S V, Sarma P N. Biosens Bioelectron, 2008; 24: 41

[8] Lee A K, Newman D K. Appl Microbiol Biotechnol, 2003; 63(1): 134

[9] Wang H B, Hu C, Hu X X, Yang M, Qu J H. Water Res, 2012; 46: 1070

[10] Dubiel M, Hsu C H, Chien C C, Mansfeld F, Newman D K. Appl Environ Microbiol, 2002; 68: 1440

[11] Herrera L K, Videla H A. Int Biodeterior Biodegrad, 2009; 63: 891

[12] Lee A K, Buehler M G, Newman D K. Corros Sci, 2006; 48: 165

[13] Kus E, Nealson K, Mansfeld F. Corros Sci, 2007; 49: 3421

[14] Nagiub A, Mansfeld F. Electrochim Acta, 2002; 47: 2319

[15] Nozue H, Hayashi T, Hashimoto Y, Ezaki T, Hamasaki K, Owada K. Int J Syst Bacteriol, 1992; 42: 628

[16] Guha H, Jayachandran K, Maurrasse F. Environ Pollut, 2001; 115: 209

[17] Shin H Y, Singhal N, Park J W. Chemosphere, 2007; 68: 1129

[18] Long P, Li Q F. Corros Sci Prot Technol, 2007; 19: 235

(龙萍, 李庆芬. 腐蚀科学与防护技术, 2007; 19: 235)

[19] Rousseau C, Baraud F, Leleyter L, Gil O. J Hazard Mater, 2009; 167: 953

[20] Mottin E, Caplat C, Latire T, Mottier A, Mahaut M L, Costil K, Barillier D, Lebel J M, Serpentini A. Mar Pollut Bull, 2012; http://dx.doi.org/10.1016/j.marpolbul.2012.06.017

[21] Wagner P, Little B, Hart K, Ray R, Thomas D, Trzaskoma–Paulette P, Lucas K. Int Biodeterior Biodegrad, 1996; 37: 151

[22] Zhang J, Liu F L, Li W H, Duan J Z, Hou B R. Acta Metall Sin, 2010; 46: 1250

(张杰, 刘奉令, 李伟华, 段继周, 侯保荣. 金属学报, 2010; 46: 1250)

[23] Liu J H, Liu F, Li S M. Corros Sci Prot Technol, 2001; 13: 85

(刘建华, 刘芳, 李松梅. 腐蚀科学与防护技术, 2001; 13: 85)

[24] Mansfeld F. Electrochim Acta, 2007; 52: 7670 

[25] Liu J H, Liang X, Li S M. J Chin Rare Earth Soc, 2006; 24: 81

(刘建华, 梁馨, 李松梅. 中国稀土学报, 2006; 24: 81)

[26] Wan Y, Zhang D, Liu H Q, Li Y J, Hou B R. Electrochim Acta, 2010; 55: 1528

[27] Liu G Z, Qian J H, Ma Y, Wu J H. J Electrochem, 2002; 8: 191

(刘光洲, 钱建华, 马 焱, 吴建华. 电化学, 2002; 8: 191)

[28] Liu J, Yan Y G, Chen G Z, Liu G Z, Li Q F. J Electrochem, 2006; 12: 93

 (林晶, 阎永贵, 陈光章, 刘光州, 李庆芬. 电化学, 2006; 12: 93)

[29] Long P, Yang S W, Luo Z H. Appl Sci Technol, 2003; 30(7): 1

(龙萍, 杨世伟, 罗兆红. 应用科技, 2003; 30(7): 1)

[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[3] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[4] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[7] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[8] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[12] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[13] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!