Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1365-1373    DOI: 10.3724/SP.J.1037.2011.00773
Current Issue | Archive | Adv Search |
RESEARCH ON PITTING CORROSION BEHAVIOR OF COPPER IN THE SOLUTION WITH HCO3- AND Cl-
WANG Changgang, DONG Junhua, KE Wei, CHEN Nan, LI Xiaofang
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WANG Changgang DONG Junhua KE Wei CHEN Nan LI Xiaofang. RESEARCH ON PITTING CORROSION BEHAVIOR OF COPPER IN THE SOLUTION WITH HCO3- AND Cl-. Acta Metall Sin, 2012, 48(11): 1365-1373.

Download:  PDF(1068KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The strategy for disposal of high-level radioactive waste in china is to enclose the spent nuclear fuel in sealed metal canisters which are embedded in bentonite clay hundreds meters down in the be-rock. The choice of container material depends largely on the redox conditions and the aqueous environment of the repository. One of the choices for the fabrication of waste canisters is copper, because it is thermodynamically stable under the saline, anoxic conditions over the large majority of the container lifetime. However, in the early aerobic phase of the geological disposal the corrosion of copper could take place, and the corrosion behavior of copper would be influenced by the complex chemical conditions of groundwater markedly. Pitting corrosion of copper often takes place in power plants or air-conditioning condensate water. The corrosion environment usually contains HCO3-, SO42- and Cl-. In the early stage of geological disposal, if the aerobic water with HCO3- , SO42- and Cl- immersion repository, the pitting corrosion of copper may occur. Some researchers believed that SO42- and Cl- would promote the occurrence of pitting corrosion of copper, and HCO3- will lead to surface passivation and inhibit pitting. It is considered that in the solution with HCO3- and SO42-, HCO3- could firstly promote and then inhibit pitting. However, there is no systematic work about pitting in the solution with HCO3- and Cl-. In this work, the cycle polarization behavior and surface morphology of pitting on copper has been investigated in HCO3- and Cl- mixed solution, respectively by electrochemical cyclic polarization test and SEM. The results showed that the circular polarization curves of copper could be divided into four types. The pitting on the surface of copper occurs only in the environment with both Cl- and HCO3-. In the area of active dissolve pitting, the pitting susceptibility increased with the increase of concentration of Cl-, while it increased then decreased with the increase of the concentration of HCO3-. In the area of passive film rupture pitting area, pitting susceptibility increased with the increase of concentration of Cl- and with the decrease of the concentration of HCO3-.

Key words:  high-level radioactive waste      Cu      pitting      cyclic polarization      HCO3-      Cl-     
Received:  08 December 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.51071160)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00773     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1365

[1] Wang C G, Dong J H, Ke W, Chen N. Acta Metall Sin, 2011; 47: 354

(王长罡, 董俊华, 柯 \ \ 伟, 陈楠, 金属学报, 2011; 47: 354)

[2] Darren A, Lytle A, Mallikarjuna N, Nadagouda B. Corros Sci, 2010; 52: 1927

[3] Guo Y H, Wang J, Wang ZM, Liu S F, Su Y. Bull Mineral Petrol Geochem, 2007; 26: 607

(郭永海, 王 驹, 王志明, 刘淑芬, 苏 锐. 矿物岩石地球化学通报, 2007; 26: 607)

[4] Fujii T, Kodama T, Baba H. Corros Sci, 1984; 24: 901

[5] Drogowska M, Brossard L, M´enard H. Surf Coat Technol, 1988; 34: 383

[6] Drogowska M, Brossard L, M´enard H. J Electrochem Soc, 1992; 139: 39

[7] Duthil J P, Mankowski G, Giusti A. Corros Sci, 1996; 38: 1839

[8] Reda M R, Alhajji J N. Corrosion, 1996; 52: 232

[9] Cantor A F, Park J K, Vaiyavatjamai P. J Am Water Works Assoc, 2003; 95(5): 112

[10] Baba H, Kodama T, Fujii T. Trans Natl Res Inst Met, 1986; 28: 248

[11] Christy A G, Lowe A, Otieno–Alego V, Stoll M, Webster R D. J Appl Electrochem, 2004; 34: 225

[12] Edwards M, Ferguson J F, Reiber S H. J AmWaterWorksAssoc, 1994; 86(7): 74

[13] Sosa M, Patel S, Edwards M. Corrosion, 1999; 55: 1069

[14] Edwards M, Rehring J, Mayer T. Corrosion, 1994; 50: 366

[15] Cong H, Scully J R. J Electrochem Soc, 2010; 157: C200

[16] Nishikata A, Itagaki M, Tsuru T, Haruyama S. Corros Sci, 1990; 31: 287

[17] Jujii T. Trans Natl Res Inst Met, 1988; 30(2): 81

[18] Drogowska M, Brossard L, M´enard H. J Electrochem Soc, 1992; 139: 39

[19] Wang C G, Dong J H, Ke W, Chen N. Acta Metall Sin, 2012; 48: 85

(王长罡, 董俊华, 柯伟, 陈 楠. 金属学报, 2012; 48: 85)

[20] Abd El Meguid E A, Awad N K. Corros Sci, 2009; 51: 1134

[21] Ding J, Lin H C, Cao C N. Corros Sci Prot Technol, 2002; 14: 67

(丁杰, 林海潮, 曹楚南. 腐蚀科学与防护技术, 2002; 14: 67)

[1] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[5] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[6] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[7] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[8] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[9] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[10] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[11] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[12] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[13] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[14] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[15] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
No Suggested Reading articles found!