Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (11): 1357-1364    DOI: 10.3724/SP.J.1037.2012.00201
Current Issue | Archive | Adv Search |
AN ANTIFERROMAGNETIC Fe24Mn4Al5Cr COVAR ALLOY IMPULSE--PASSIVATED BY AN ALTERNATING CURRENT VOLTAGE OVERLAPPING A DIRECT CURRENT VOLTAGE AND ITS CORROSION RESISTANCE
ZHU Xuemei, CAO Xuemei, LIU Ming,  LEI Mingkai,  ZHANG Yansheng
1) School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028
2) Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
Cite this article: 

ZHU Xuemei CAO Xuemei LIU Ming LEI Mingkai ZHANG Yansheng. AN ANTIFERROMAGNETIC Fe24Mn4Al5Cr COVAR ALLOY IMPULSE--PASSIVATED BY AN ALTERNATING CURRENT VOLTAGE OVERLAPPING A DIRECT CURRENT VOLTAGE AND ITS CORROSION RESISTANCE. Acta Metall Sin, 2012, 48(11): 1357-1364.

Download:  PDF(833KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

An antiferromagnetic Fe24Mn4Al5Cr covar alloy has been impulse-passivated by an alternating current (AC) voltage overlapping a direct current (DC) voltage, in order to improve its corrosion resistance due to the poor corrosion property of austenite matrix with a high Mn content, a low Cr and/or Al content. The impulse-passivated films were obtained in 1.0 mol/L Na2SO4 solution at an AC voltage with modulation amplitude of 180-480 mV during alternating period of 200-400 ms for modification time of 5-15 min, and simultaneously at a DC voltage of 620 mV. The impulse-passivation parameters in 1.0 mol/L Na2SO4 + 0.5 mol/L Ha2SO4 solution were optimized as amplitude of 380 mV, period of 300 ms, and time of 10 min, by using the potential decline curves. The impulse-passivated films on the covar alloy under the optimum parameters were characterized by Auger electron spectroscopy and X-ray photoelectron spectroscopy (AES/XPS), and evaluated by anodic polarization and electrochemical impedance spectroscopy (EIS), respectively, and compared with those of the constant-passivated films at DC voltage of 620 mV for modification time of 15 min. In the impulse-passivated films on the covar alloy, an enrichment of elements Al and Cr, a lack of Mn in a thick barrier film composed of oxides Al2O3 and Cr2O3. The anodic polarization curves of the impulse-passivated films have a self-passivation with the higher corrosion potential of -100 mV and lower passive current density of 0.7 μA/cm2, than those of -360 mV and 2.6 μA/cm2 for the constant-passivated films. These electrochemical polarization behaviors were similar to those of the AISI 304 austenitic stainless steel. The EIS of the impulse-passivated films has larger diameter of capacitive arc, higher impedance modulus $|Z|$, and wider phase degree range,  relative to the constant-passivated films. Correspondently, the impulse-passivated film resistant Rp increased to 54.0 kΩ·cm2 from 14.8 kΩ·cm2 and effective capacitance decreased to 10.2 μF/cm2 from 14.0 μF/cm2, using an equivalent electric circuit of< Rs-(Rp//CPE). The high insulation of the impulse-passivated films on the covar alloy led to an improved corrosion resistance of the cover alloy. The impulse-passivated antiferromagnetic Fe24Mn4Al5Cr covar alloy exhibits an application potential in wide industrial field.

Key words:  Fe-Mn-Al alloy      impulse-passivation      passive film      potential decline      anodic polarization      electrochemical impedance spectroscopy     
Received:  13 April 2012     
Fund: 

Supported by National Natural Science Foundation of China (No.50725519)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00201     OR     https://www.ams.org.cn/EN/Y2012/V48/I11/1357

[1] Shi C X, Zhang Y S. Encycl Mater Sci Eng, 1993; 3(Suppl.): 1719

[2] Casteletti L C, Lombardi N A, Totten G E, Heck S C, Fernandes F A P. J ASTM Int, 2010; 7: 102605

[3] Zhu X M, Zhang Y S. Corrosion, 1998; 54: 3

[4] Umino R, Liu X J, Sutou Y, Wang C P, Ohnuma I, Kainuma R, Ishida K. J Phase Equilb Diffus, 2006; 27: 54

[5] Gebhardt T, Music D, Kossmann D, Ekholm M, Abrikosov I A, Vitos L, Schneider J M. Acta Mater, 2011; 59: 3145

[6] Lee J W, Duh J G, Wang J H. Surf Coat Technol, 2003; 168: 223

[7] Jaw J H, Cheng W C, Wang C J. Metall Mater Trans, 2005; 36A: 2289

[8] Su C W, Lee J W, Wang C S, Chao C G, Liu T F. Surf Coat Technol, 2008; 202: 1847

[9] Wang C H, Luo C W, Huang C F, Huang M S, Ou K L, Yu C H. J Alloys Compd, 2011; 509: 691

[10] Zhang Y S, Zhu X M, Liu M, Che R X. Appl Surf Sci, 2004; 222: 89

[11] Zhu X M, Liu M, Zhang Y S. Corros Eng Sci Technol, 2007; 42: 22

[12] Wendt J L, Chin D T. Corros Sci, 1985; 25: 889

[13] Wendt J L, Chin D T. Corros Sci, 1985; 25: 901

[14] Song G L, Cao C N, Wang Y, Lin H C. J Chin Soc Corros Protect, 1991; 11: 319

(宋光铃, 曹楚南, 王友, 林海潮. 中国腐蚀与防护学报, 1991; 11: 319)

[15] Song G L, Cao C N, Lin H C, Xia B J. J Chin Soc Corros Protect, 1992; 12: 77

(宋光铃, 曹楚南, 林海潮, 夏邦杰. 中国腐蚀与防护学报, 1992; 12: 77)

[16] Mansfeld F, Lin S H, Kwiatkowski L. Corrosion, 1994; 50: 838

[17] Zhang J X, Yan L C, Wei Z F, Qiao Y N, Cao C N, Zhang J Q. Acta Metall Sin, 2004; 40: 404

(张俊喜, 颜立成, 魏增福, 乔亦男, 曹楚南, 张鉴清. 金属学报, 2004; 40: 404)

[18] Taveira L V, Montemor M F, Belo M D C, Ferreira M G, Dick L F P. Corros Sci, 2010; 52: 2813

[19] Doff J, Archibong P E, Jones G, Koroleva E V, Skeldon P, Thompson G E. Electrochim Acta, 2011; 56: 3225

[20] Liu X L, Xu Y X, Zhang T, Shao Y W, Meng G Z, Wang F H. Corros Sci Prot Technol, 2009; 21: 188

(刘晓兰, 徐雅欣, 张 涛, 邵亚薇, 孟国哲, 王福会. 腐蚀科学与防护技术, 2009; 21: 188)

[21] Liu X L, Zhang T, Shao Y W, Meng G Z, Wang F H. Corros Sci, 2009; 51: 2685

[22] Sanz J M, Hofmann S. Surf Interface Anal, 1986; 8: 147

[23] Zhu X M, Zhang Y S. Appl Surf Sci, 1998; 125: 11

[24] Trompette J L, Massot L. Corros Sci, 2012; 57: 174

[25] Li Y C, Yan C W, Duan H P. J Chin Soc Corros Protect, 2002; 22: 375

(李运超, 严川伟, 段红平. 中国腐蚀与防护学报, 2002; 22: 375)

[26] Brug J, van den Eeden ALG, Sluyters–Rehbach M, Sluyters J H. J Electroanal Chem, 1984; 176: 275

[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] TANG Yanbing, SHEN Xinwang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, ZOU Jiasheng, XU Jing. Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution[J]. 金属学报, 2022, 58(3): 324-333.
[3] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
[4] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[5] BAI Yang, WANG Zhenhua, LI Xiangbo, LI Yan. Corrosion Behavior of Al(Y)-30%Al2O3 Coating Fabricated by Low Pressure Cold Spray Technology[J]. 金属学报, 2019, 55(10): 1338-1348.
[6] Jiang XU, Xike BAO, Shuyun JIANG. In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids[J]. 金属学报, 2018, 54(3): 443-456.
[7] Dahai XIA, Shizhe SONG, Jianqiu WANG, Jingli LUO. Research Progress on Sulfur-Induced Corrosion of Alloys 690 and 800 in High Temperature and High Pressure Water[J]. 金属学报, 2017, 53(12): 1541-1554.
[8] Yongjun CHEN, Xiaogang HU, Jianbing QIANG, Chuang DONG. QUASICRYSTAL ABRASIVE POLISHING ON SOFT METALS VIA A CHARACTERISTIC SMEARING WEAR MECHANISM FOR EFFICIENT SURFACE FLATTENING, HARDENING AND CORROSION ENHANCEMENT[J]. 金属学报, 2016, 52(10): 1353-1362.
[9] Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. 金属学报, 2015, 51(9): 1077-1084.
[10] WEI Renchao, XU Fengling, LIN Cunguo, TANG Xiao, LI Yan. CORROSION BEHAVIOR OF B10 ALLOY EXPOSED TO SEAWATER CONTAINING VIBRIO AZUREUS, SULFATE-REDUCING BACTERIA, AND THEIR MIXTURE[J]. 金属学报, 2014, 50(12): 1461-1470.
[11] FU Xinxin, DONG Junhua, HAN En-hou, KE Wei. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MONITORING ON MILD STEEL Q235 IN SIMULATED INDUSTRIAL ATMOSPHERIC CORROSION ENVIORNMENT[J]. 金属学报, 2014, 50(1): 57-63.
[12] ZHOU Xiaowei,SHEN Yifu. CORROSION BEHAVIOR AND EIS STUDY OF NANOCRYSTALLINE Ni-CeO2 COATINGS IN AN ACID NaCl SOLUTION[J]. 金属学报, 2013, 49(9): 1121-1130.
[13] WU Zhanwen, CHEN Ji, PIAO Nan, YANG Mingchuan. SYNTHESIS AND PASSIVE PROPERTY OF NANOCOMPOSITE Ni-WC COATING[J]. 金属学报, 2013, 49(10): 1185-1190.
[14] TAN Yu LIANG Kexin ZHANG Shenghan. SEMICONDUCTOR PROPERTIES OF THE PASSIVE FILM FORMED ON Ni201 IN NEUTRAL SOLUTION[J]. 金属学报, 2012, 48(8): 971-976.
[15] WEI Xin, DONG Junhua, TONG Jian, ZHENG Zhi,KE Wei. INFLUENCE OF TEMPERATURE ON PITTING CORROSION RESISTANCE OF Cr26Mo1 ULTRA PURE HIGH CHROMIUM FERRITE STAINLESS STEEL IN 3.5%NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 502-507.
No Suggested Reading articles found!