Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1166-1174    DOI: 10.3724/SP.J.1037.2012.00173
Current Issue | Archive | Adv Search |
GAO Fei 1, LIU Zhenyu 1, ZHANG Weina 1, LIU Haitao 1, SUN Guangting 2,WANG Guodong 1
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2. Jigang International Engineering Technolgy Co. Ltd., Jinan 250101
Download:  PDF(3934KB) 
Export:  BibTeX | EndNote (RIS)      

Improved mechanical properties of ferritic stainless steels (FSSs), such as toughness and high temperature or creep resistance, have been attained through the addition of stabilizing elements such as Nb and/or Ti. Therefore, stabilized ferritic stainless steels are good candidates to replace the conventional Cr–Ni austenitic stainless steels for specific applications to save the higher price of Ni. As compared to austenitic stainless steels, however, ferritic stainless steels possess lower formability which is closely depends on the γ–fiber recrystallization texture. Hence, improvement of formability is desired for further wide applications of FSSs. The stabilizing effects of alloying elements work by consuming not only the interstitial atoms in solid solution but also forming the carbide and nitride precipitates such as TiC, TiN and NbC. The precipitation takes place in steel making processes such as slab reheating, hot rolling and coiling. The parameters involving these processes have their effects on the size, shape and distribution of the precipitates that influence the γ–fiber recrystallization texture. Many papers intended to clarify the effect of precipitates. However, there were differences concerning the effect of precipitates, which may hinder further improvement of formability. In the present paper, precipitate size and dispersion were changed by controlling hot rolling processes and the effect of precipitate size and dispersion on the development of recrystallizaton texture in a 17%Cr ferritic stainless steels was investigated. Mechanical properties were measured by tensile tests. The characteristics of precipitate were observed by transmission electron microscopy, and X–ray diffraction was used to characterize texture evolution processes. The results show that low temperature finish rolling promotes the formation of a large number of fine and dispersed TiC precipitates in the hot band. After rolling and annealing, the state of fine and dispersed precipitation can be inherited in the cold rolled and annealed sheets. Strong γ–fiber recrystallizaton texture is developed in the specimen with sparsely distributed and coarse precipitates. Fine and dispersed precipitates promote the nucleation of randomly oriented grains, strongly suppress the growth of recrystallized grain, and thereby weakening γ–fiber recrystallizaton texture and impairing the formability of the cold rolled and annealed sheets. The precipitates have significant effects on the nucleation of randomly oriented grains and pinning grain boundary mobility during recrystallization annealing after cold rolling, which plays an important roles in controlling the γ–fiber recrystallizaton texture in a ferritic stainless steels.

Key words:  17%Cr ferritic stainless steel      precipitate      texture      recrystallization     
Received:  05 April 2012     
ZTFLH:  TG113  

Supported by National Natural Science Foundation of China (Nos.50734002 and 51004035) and Fundamental Research Funds for the Central Universities (No.N100507002)

Cite this article: 

GAO Fei LIU Zhenyu ZHANG Weina LIU Haitao SUN Guangting WANG Guodong. TEXTURES AND PRECIPITATES IN A 17%Cr FERRITIC STAINLESS STEELS. Acta Metall Sin, 2012, 48(10): 1166-1174.

URL:     OR

[1] Yazawa Y, Ozaki Y, Kato Y. JSAE Rev, 2003; 24: 483

[2] Liu H T, Liu Z Y, Wang G D. ISIJ Int, 2009; 49: 890

[3] Miyamoto H, Xiao T, Uenoya T, Hatano M. ISIJ Int, 2010; 50: 1653

[4] Siqueira R P, Sandim H R Z, Oliveira T R. Mater Sci Eng, 2008; A497: 216

[5] Zhang C, Liu Z Y,Wang G D. J Mater Process Tech, 2011; 211: 1051

[6] Almagro J F, Llovet X, Heredia M A, Luna C, Sanchez R. Microchim Acta, 2008; 161: 323

[7] Raabe D, L¨ucke K. Scr Metall, 1992; 27: 1533

[8] Raabe D, H¨olscher M, Dubke M, Reher F, L¨ucke K. Steel Res, 1993; 64: 359

[9] Raabe D. J Mater Sci, 1996; 31: 3839

[10] H¨olscher M, Raabe D, L¨ucke K. Steel Res, 1991; 62: 567

[11] Raabe D, L¨ucke K. Scr Metall Mater, 1992; 26: 19

[12] Sinclair C W, Robaut F, Maniguet L, Mithieux J D, Schmitt J H, Brechet Y. Adv Eng Mater, 2003; 5: 570

[13] Sinclair C W, Mithieux J D, Schmitt J H, Brechet Y. Metall Mater Trans, 2005; 36A: 3205

[14] Zhang C. PhD Thesis, Northeastern University, Shenyang, 2011

(张驰. 东北大学博士学位论文, 沈阳, 2011)

[15] Barnett M R, Jonas J J. ISIJ Int, 1997; 37: 697

[16] Pandit A, Murugaiyan A, Saha Podder A, Haldar A, Bhattacharjee D, Chandra S, Ray R K. Scr Mater, 2005; 53: 1309

[17] Sun W P, Militaer M, Jonas J J. Metall Trans, 1992; 23A: 821

[18] Chang S K, Kang H J. Steel Res Int, 1995; 66: 463

[19] Liu H T. PhD Thesis, Northeastern University, Shenyang, 2009

(刘海涛. 东北大学博士学位论文, 沈阳, 2009)

[20] Gao F, Liu Z Y, Liu H T, Wang G D. Acta Metall Sin (Engl Lett), 2011; 24: 343

[21] Huh M Y, Engler O. Mater Sci Eng, 2001; A308: 74

[22] Uematsu Y, Yamazaki Y. Tetsu Hagane, 1992; 78: 632

[23] Park S H, Kim K Y, Lee Y D, Park C G. ISIJ Int, 2002; 42: 100

[24] Kang H G, Huh M Y, Park S H, Engler O. Steel Res Int, 2008; 79: 489

[25] Hamada J, Ono N, Inoue H. ISIJ Int, 2011; 51: 1740

[26] Liu H T, Ma D X, Liu Z Y, Wang G D. J Iron Steel Res, 2010; 22(8): 31

(刘海涛, 马东旭, 刘振宇, 王国栋. 钢铁研究学报, 2010; 22(8): 31)

[27] Satoh S, Obara T, Nishida K, Irie T. Trans ISIJ, 1986; 26: 838

[28] Huh M Y, Kim H C, Engler O. Steel Res, 2000; 71: 239

[29] Kubodera H, Inagaki H. Bull Jpn Inst Met, 1986; 7: 383

[30] Satoh S, Obara T, Tsunoyama K. Trans ISIJ, 1986; 26: 737

[31] Subramaniam S V, Prikryl M, Gaulin B D, Clifford D D, Benincasa S, Reilly I O’. ISIJ Int, 1994; 34: 61

[32] Zener C, Smith S C. Trans AIME, 1984; 175: 47

[33] Verbeken K, Kestens L, Jonas J J. Scr Mater, 2003; 48: 1457

[34] Ray R K, Jonas J J, Hook R E. Int Mater Rev, 1994; 39: 129

[35] Pereloma E V, Gazder A A, Jonas J J, Miller M K, Davies C H J. ISIJ Int, 2008; 48: 1443

[1] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[2] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[3] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
[4] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[5] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[6] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[7] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[8] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[9] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[10] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[11] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[12] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[13] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[14] HUI Yajun, LIU Kun, WU Kemin, LI Qiuhan, NIU Tao, WU Qiaoling. Effect of Coiling Temperature on Microstructure and Mechanical Properties of 500 MPa Grade Hot Stamping Axle Housing Steel[J]. 金属学报, 2020, 56(12): 1605-1616.
[15] DU Zijie, LI Wenyuan, LIU Jianrong, SUO Hongbo, WANG Qingjiang. Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process[J]. 金属学报, 2020, 56(12): 1667-1680.
No Suggested Reading articles found!