Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1166-1174    DOI: 10.3724/SP.J.1037.2012.00173
Current Issue | Archive | Adv Search |
TEXTURES AND PRECIPITATES IN A 17%Cr FERRITIC STAINLESS STEELS
GAO Fei 1, LIU Zhenyu 1, ZHANG Weina 1, LIU Haitao 1, SUN Guangting 2,WANG Guodong 1
1. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2. Jigang International Engineering Technolgy Co. Ltd., Jinan 250101
Cite this article: 

GAO Fei LIU Zhenyu ZHANG Weina LIU Haitao SUN Guangting WANG Guodong. TEXTURES AND PRECIPITATES IN A 17%Cr FERRITIC STAINLESS STEELS. Acta Metall Sin, 2012, 48(10): 1166-1174.

Download:  PDF(3934KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Improved mechanical properties of ferritic stainless steels (FSSs), such as toughness and high temperature or creep resistance, have been attained through the addition of stabilizing elements such as Nb and/or Ti. Therefore, stabilized ferritic stainless steels are good candidates to replace the conventional Cr–Ni austenitic stainless steels for specific applications to save the higher price of Ni. As compared to austenitic stainless steels, however, ferritic stainless steels possess lower formability which is closely depends on the γ–fiber recrystallization texture. Hence, improvement of formability is desired for further wide applications of FSSs. The stabilizing effects of alloying elements work by consuming not only the interstitial atoms in solid solution but also forming the carbide and nitride precipitates such as TiC, TiN and NbC. The precipitation takes place in steel making processes such as slab reheating, hot rolling and coiling. The parameters involving these processes have their effects on the size, shape and distribution of the precipitates that influence the γ–fiber recrystallization texture. Many papers intended to clarify the effect of precipitates. However, there were differences concerning the effect of precipitates, which may hinder further improvement of formability. In the present paper, precipitate size and dispersion were changed by controlling hot rolling processes and the effect of precipitate size and dispersion on the development of recrystallizaton texture in a 17%Cr ferritic stainless steels was investigated. Mechanical properties were measured by tensile tests. The characteristics of precipitate were observed by transmission electron microscopy, and X–ray diffraction was used to characterize texture evolution processes. The results show that low temperature finish rolling promotes the formation of a large number of fine and dispersed TiC precipitates in the hot band. After rolling and annealing, the state of fine and dispersed precipitation can be inherited in the cold rolled and annealed sheets. Strong γ–fiber recrystallizaton texture is developed in the specimen with sparsely distributed and coarse precipitates. Fine and dispersed precipitates promote the nucleation of randomly oriented grains, strongly suppress the growth of recrystallized grain, and thereby weakening γ–fiber recrystallizaton texture and impairing the formability of the cold rolled and annealed sheets. The precipitates have significant effects on the nucleation of randomly oriented grains and pinning grain boundary mobility during recrystallization annealing after cold rolling, which plays an important roles in controlling the γ–fiber recrystallizaton texture in a ferritic stainless steels.

Key words:  17%Cr ferritic stainless steel      precipitate      texture      recrystallization     
Received:  05 April 2012     
ZTFLH:  TG113  
Fund: 

Supported by National Natural Science Foundation of China (Nos.50734002 and 51004035) and Fundamental Research Funds for the Central Universities (No.N100507002)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00173     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1166

[1] Yazawa Y, Ozaki Y, Kato Y. JSAE Rev, 2003; 24: 483

[2] Liu H T, Liu Z Y, Wang G D. ISIJ Int, 2009; 49: 890

[3] Miyamoto H, Xiao T, Uenoya T, Hatano M. ISIJ Int, 2010; 50: 1653

[4] Siqueira R P, Sandim H R Z, Oliveira T R. Mater Sci Eng, 2008; A497: 216

[5] Zhang C, Liu Z Y,Wang G D. J Mater Process Tech, 2011; 211: 1051

[6] Almagro J F, Llovet X, Heredia M A, Luna C, Sanchez R. Microchim Acta, 2008; 161: 323

[7] Raabe D, L¨ucke K. Scr Metall, 1992; 27: 1533

[8] Raabe D, H¨olscher M, Dubke M, Reher F, L¨ucke K. Steel Res, 1993; 64: 359

[9] Raabe D. J Mater Sci, 1996; 31: 3839

[10] H¨olscher M, Raabe D, L¨ucke K. Steel Res, 1991; 62: 567

[11] Raabe D, L¨ucke K. Scr Metall Mater, 1992; 26: 19

[12] Sinclair C W, Robaut F, Maniguet L, Mithieux J D, Schmitt J H, Brechet Y. Adv Eng Mater, 2003; 5: 570

[13] Sinclair C W, Mithieux J D, Schmitt J H, Brechet Y. Metall Mater Trans, 2005; 36A: 3205

[14] Zhang C. PhD Thesis, Northeastern University, Shenyang, 2011

(张驰. 东北大学博士学位论文, 沈阳, 2011)

[15] Barnett M R, Jonas J J. ISIJ Int, 1997; 37: 697

[16] Pandit A, Murugaiyan A, Saha Podder A, Haldar A, Bhattacharjee D, Chandra S, Ray R K. Scr Mater, 2005; 53: 1309

[17] Sun W P, Militaer M, Jonas J J. Metall Trans, 1992; 23A: 821

[18] Chang S K, Kang H J. Steel Res Int, 1995; 66: 463

[19] Liu H T. PhD Thesis, Northeastern University, Shenyang, 2009

(刘海涛. 东北大学博士学位论文, 沈阳, 2009)

[20] Gao F, Liu Z Y, Liu H T, Wang G D. Acta Metall Sin (Engl Lett), 2011; 24: 343

[21] Huh M Y, Engler O. Mater Sci Eng, 2001; A308: 74

[22] Uematsu Y, Yamazaki Y. Tetsu Hagane, 1992; 78: 632

[23] Park S H, Kim K Y, Lee Y D, Park C G. ISIJ Int, 2002; 42: 100

[24] Kang H G, Huh M Y, Park S H, Engler O. Steel Res Int, 2008; 79: 489

[25] Hamada J, Ono N, Inoue H. ISIJ Int, 2011; 51: 1740

[26] Liu H T, Ma D X, Liu Z Y, Wang G D. J Iron Steel Res, 2010; 22(8): 31

(刘海涛, 马东旭, 刘振宇, 王国栋. 钢铁研究学报, 2010; 22(8): 31)

[27] Satoh S, Obara T, Nishida K, Irie T. Trans ISIJ, 1986; 26: 838

[28] Huh M Y, Kim H C, Engler O. Steel Res, 2000; 71: 239

[29] Kubodera H, Inagaki H. Bull Jpn Inst Met, 1986; 7: 383

[30] Satoh S, Obara T, Tsunoyama K. Trans ISIJ, 1986; 26: 737

[31] Subramaniam S V, Prikryl M, Gaulin B D, Clifford D D, Benincasa S, Reilly I O’. ISIJ Int, 1994; 34: 61

[32] Zener C, Smith S C. Trans AIME, 1984; 175: 47

[33] Verbeken K, Kestens L, Jonas J J. Scr Mater, 2003; 48: 1457

[34] Ray R K, Jonas J J, Hook R E. Int Mater Rev, 1994; 39: 129

[35] Pereloma E V, Gazder A A, Jonas J J, Miller M K, Davies C H J. ISIJ Int, 2008; 48: 1443

[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[6] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[8] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[9] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[10] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[11] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[12] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[13] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[14] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[15] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
No Suggested Reading articles found!