Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1160-1165    DOI: 10.3724/SP.J.1037.2012.00364
Current Issue | Archive | Adv Search |
BEHAVIOUR AND MECHANISM OF STRAIN HARDENING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION
DAI Qifeng 1, SONG Renbo 1, FAN Wuyan 1, GUO Zhifei 1,2, GUAN Xiaoxia 1
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2. Shougang Research Institute of Technology, Beijing 100043
Cite this article: 

DAI Qifeng SONG Renbo FAN Wuyan GUO Zhifei GUAN Xiaoxia. BEHAVIOUR AND MECHANISM OF STRAIN HARDENING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION. Acta Metall Sin, 2012, 48(10): 1160-1165.

Download:  PDF(1627KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Strain hardening behaviour and mechanism of a cold–rolled dual phase steel DP1180 under quasi–static tensile condition at a strain rate of 0.001 s−1 by electronic universal testing machine, and dynamic tensile condition at strain rates of 500 and 1750 s−1 by split Hopkinson tensile bar (SHTB) apparatus were systematically studied. According to the modified Swift true strain–stress model, the experimental data was regressed by using nonlinear fitting method, and strain hardening exponent in the modified Swift model was calculated by a modified Crussard–Jaoul method. The results revealed that there are two stage strain hardening characteristics of DP1180 steel at the strain rate range of 0.001—1750 s−1, the strain hardening ability of the stage I was enhanced with increase of strain rate, while the strain hardening ability of the stage II was weakened, and the transition strain was decreased. The ferrite near the martensite regions formed cell blocks with dislocation structures, with a size of 90 nm, due to the limit of deformation compatibility,  and the existence of geometrically necessary boundary (GNB) made DP1180 steel not instantly damaged under deformation at high strain rates. In addition, the adiabatic temperature rise of ΔT=103  ℃ made martensite easy to have plastic deformation at a strain rate of 1750 s−1.

Key words:  dual phase steel      high strain rate      strain hardening      modified Crussard--Jaoul analysis      geometrically necessary boundary     
Received:  20 June 2012     
ZTFLH:  TG142. 41  
Fund: 

Supported by High Technology Research and Development Program of China (No.2009AA03Z518) and Basic Theory Research Fund of Engineering Research Institute of USTB (No.YJ2010–006)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00364     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1160

[1] Chongthairungruang B, Uthaisangsuk V, Suranuntchai S, Jirathearanat S. Mater Des, 2012; 39: 318

[2] Giri S K, Bhattacharjee D. J Mater Eng Perform, 2012; 21: 988

[3] Pouranvari M. Mater Sci Eng, 2012; A546: 129

[4] Queiroz R R U, Cunha F G G, Gonzalez B M. Mater Sci Eng, 2012; A543: 84

[5] Ahmad E, Manzoor T, Ziai M M A, Hussain N. J Mater Eng Perform, 2012; 21: 382

[6] Nouri A, Saghafian H, Kheirandish S. Int J Mater Res, 2010; 101: 1286

[7] Calcagnotto M, Adachi Y, Ponge D, Raabe D. Acta Mater, 2011; 59: 658

[8] Sun X, Choi K S, Soulami A, Liu W N, Khaleel M A. Mater Sci Eng, 2009; A526: 140

[9] Huh H, Kang W J, Han S S. Exp Mech, 2002; 42(1): 8

[10] Deng Z J, Liu J, Wang H, Li P H. J Mater Therm Treat, 2011; 32: 111

(邓照军, 刘静, 王辉, 李平和. 材料热处理学报, 2011; 32: 111)

[11] Kamp A, Celotto S, Hanlon D N. Mater Sci Eng, 2012; A538: 35

[12] Colla V, De Sanctis M, Dimatteo A, Lovicu G, Solina A, Valentini R. Metall Mater Trans, 2009; 40A: 2557

[13] Sung J H, Kim J H, Wagoner R H. Int J Plast, 2010; 26: 1746

[14] Beynon N D, Jones T B, Fourlaris G. Mater Sci Technol, 2005; 21: 103

[15] Kuang S, Kang Y L, Yu H, Liu R D. J Mater Eng, 2009; (2): 11

(邝霜, 康永林, 于浩, 刘仁东. 材料工程, 2009; (2): 11)

[16] Ramos L F, Matlock D K, Krauss G. Metall Trans, 1979; 10A: 259

[17] Samuel F H. Mater Sci Eng, 1987; 92: L1

[18] Jha B K, Avtar R, Dwivedi V S, Ramaswamy V. J Mater Sci Lett, 1987; 6: 891

[19] Swift H W. J Mech Phys Solids, 1952; (1): 1

[20] Das D, Chattopadhyay P P. J Mater Sci, 2009; 44: 2957

[21] Yu Y N. Fundamentals of Materials Science. Beijing: High Education Press, 2006: 566

(余永宁. 材料科学基础. 北京: 高等教育出版社, 2006: 566)

[22] Winther G, Jensen D J, Hansen N. Acta Mater, 1997; 45: 5059

[23] Sha G Y, Sun X G, Liu T, Zhu Y H, Feng X G. Chin J Mater Res, 2010; 24: 567

(沙桂英, 孙晓光, 刘腾, 朱宇宏, 冯晓刚. 材料研究学报, 2010; 24: 567)

[24] Hughes D A, Hansen N, Bammann D J. Scr Mater, 2003; 48: 147

[25] Wu Z Q, Tang Z Y, Li H Y, Zhang H D. Acta Metall Sin, 2012; 48: 593

(吴志强, 唐正友, 李华英, 张海东. 金属学报, 2012; 48: 593)

[26] Wu C C, Wang S H, Chen C Y, Yang J R, Chiu P K, Fang J. Scr Mater, 2007; 56: 717

[1] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[2] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[3] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[4] CHU Shuangjie, MAO Bo, HU Guangkui. Microstructure Control and Strengthening Mechanism of High Strength Cold Rolled Dual Phase Steels for Automobile Applications[J]. 金属学报, 2022, 58(4): 551-566.
[5] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[6] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[7] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[8] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[9] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[10] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[11] Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process[J]. 金属学报, 2017, 53(9): 1110-1124.
[12] Rui YANG,Yan PAN,Wei CHEN,Qiaoyan SUN,Lin XIAO,Jun SUN. DEFORMATION BEHAVIOR AND THE MECHANISM OF MICRO-SCALE Ti-10V-2Fe-3Al PILLARSIN COMPRESSION[J]. 金属学报, 2016, 52(2): 135-142.
[13] Jie DENG,Jiawei MA,Yiyang XU,Yao SHEN. EFFECT OF MARTENSITE DISTRIBUTION ON MICROSCOPIC DEFORMATION BEHAVIOR AND MECHANICAL PROPERTIES OF DUAL PHASE STEELS[J]. 金属学报, 2015, 51(9): 1092-1100.
[14] QIN Fei, XIANG Min, WU Wei. THE STRESS-STRAIN RELATIONSHIP OF TSV-Cu DETERMINED BY NANOINDENTATION[J]. 金属学报, 2014, 50(6): 722-726.
[15] GUO Pengcheng, QIAN Lihe, MENG Jiangying, ZHANG Fucheng. MONOTONIC TENSION AND TENSION-COMPRES- SION CYCLIC DEFORMATION BEHAVIORS OF HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. 金属学报, 2014, 50(4): 415-422.
No Suggested Reading articles found!