Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (12): 1643-1653    DOI: 10.11900/0412.1961.2020.00120
Current Issue | Archive | Adv Search |
Phase-Field Simulation of the Interaction Between Pore and Grain Boundary
SUN Zhengyang1,2, WANG Yutian3, LIU Wenbo1,2()
1 School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
2 Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, Shaanxi Engineering Research Center of Advanced Nuclear Energy, Xi'an Jiaotong University, Xi'an 710049, China
3 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary. Acta Metall Sin, 2020, 56(12): 1643-1653.

Download:  HTML  PDF(2044KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The grain boundary (GB) and average grain size considerably affect the properties of materials, such as the fracture strength, dielectric constant, and thermal conductivity. For instance, when subjected to irradiation at 1750 ℃, the swelling of the UO2 pellets and the release of fission gas from them decrease significantly with the increasing average grain size. However, several second-phase particles, such as pores, are inevitably introduced into a material during the solid-phase sintering or neutron radiation processes. Therefore, studying the interaction between the pores and GBs is considerably important. In this study, a phase-field model of the interaction between the pores and GBs is developed. Subsequently, the free-energy density function was modified, where the diffusion coefficient was incorporated in the tensor form. In addition, the selection of the phenomenological parameters, such as the coefficient in the free-energy density function of the phase-field model, was analyzed, and the influencing factors of interface energy and interface width were discussed. The phase-field model simulation results of the interaction between the pores and GBs show that the curvature of GB was the major driving force associated with the movement of GB and that pores resisted the movement of GB. Accordingly, the pores moved together with the GBs when the maximum pinning force exerted by the pores was larger than the driving force produced by the curvature of GB; however, the pores and GBs separated in the opposite case, during which the GB moved much faster than pores. The results of the phase-field simulation of the grain growth of the pore-containing UO2 show that the grain growth speed decreases with the increasing porosity. The average grain size of UO2 is a power function of time, the exponent of which increases with the increasing porosity.

Key words:  phase field simulation      pore      grain boundary      grain growth      diffusion     
Received:  16 April 2020     
ZTFLH:  TG148  
Fund: NSAF Joint Fund(U1830124);National Natural Science Foundation of China(11705137);China Postdoctoral Science Foundation(2019M663738);State Key Laboratory of New Ceramic and Fine Processing Tsinghua University(KF201713)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00120     OR     https://www.ams.org.cn/EN/Y2020/V56/I12/1643

Fig.1  Schematic of phase field model (C—concentration field variable; Cα—concentration in grain; Cβ—concentration in pore; η1α, η2α—orientation field variable of grains 1, 2, respectively; ηβ—orientation field variable of pore )
ParameterSymbolValue
Phenomenological parameterA2.5
Dα, Dβ1.08
γα, γβ1.04
ε3
Kinetic parameterLα, Lβ1
M5
Gradient parameterκα, κβ, κc2
Space stepΔx1
Time stepΔt0.001
Table 1  Dimensionless parameters in simulation
Fig.2  Equilibrium profiles for phase field variables at different κα(a) orientation field variables η1α, η2α(b) concentration field variable C
Fig.3  Linear fitting curves of energy density and width of grain boundary vsκα1/2 (l—width of grain boundary, σgbenergy density of grain boundary)
Fig.4  Equilibrium profiles for phase field variables at different κc(a) orientation field variables η1α, ηβ(b) concentration field variable C
Fig.5  Linear fitting curves of energy density of phase boundary σintvsκα1/2, κβ1/2 or κc1/2
Fig.6  Phase-field simulation results of the microstructure evolution of two grain system
Fig.7  Dynamic curves of grain boundary velocity and central grain size vs dimensionlesstimescale td
Fig.8  Phase-field simulation results of the microstructure evolution of one pore system
Fig.9  Phase-field simulation results of the microstructure evolution of two pore system
Fig.10  Phase-field simulation results of the microstructure evolution of four pore system
Fig.11  Phase-field simulation results of microstructure evolution of multi-grains UO2 at porosity fp=2% (The pores in the red elliptical areas hinder the movement of grain boundaries)
Fig.12  Grain growth curves at different fp
fpnR2
02.050.990
2%2.440.997
4%3.150.992
8%4.190.995
Table 2  Grain growth exponents at different fp
[1] Rahaman M N. Ceramic Processing and Sintering [M]. New York: Marcel Dekker, 1995: 540
[2] Turnbull J A. The effect of grain size on the swelling and gas release properties of UO2 during irradiation [J]. J. Nucl. Mater., 1974, 50: 62
doi: 10.1016/0022-3115(74)90061-0
[3] Ahmed K, Tonks M, Zhang Y F, et al. Particle-grain boundary interactions: A phase field study [J]. Comput. Mater. Sci., 2017, 134: 25
doi: 10.1016/j.commatsci.2017.03.025
[4] Zhao Y, Zhang H Y, Wei H, et al. A phase field study for scaling rules of grain coarsening in polycrystalline system containing second-phase particles [J]. Acta Metall. Sin., 2013, 49: 981
doi: 10.3724/SP.J.1037.2013.00164
(赵 彦, 张洪宇, 韦 华等. 相场法研究含第二相颗粒多晶体系的晶粒粗化标度律 [J]. 金属学报, 2013, 49: 981)
doi: 10.3724/SP.J.1037.2013.00164
[5] Zhou G Z, Wang Y X, Chen Z. Phase-field method simulation of the effect of hard particles with different shapes on two-phase grain growth [J]. Acta Metall. Sin., 2012, 48: 227
doi: 10.3724/SP.J.1037.2011.00609
(周广钊, 王永欣, 陈 铮. 相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响 [J]. 金属学报, 2012, 48: 227)
doi: 10.3724/SP.J.1037.2011.00609
[6] Gao Y J, Zhang H L, Jin X, et al. Phase-field simulation of two-phase grain growth with hard particles [J]. Acta Metall. Sin., 2009, 45: 1190
(高英俊, 张海林, 金 星等. 相场方法研究硬质颗粒钉扎的两相晶粒长大过程 [J]. 金属学报, 2009, 45: 1190)
[7] Ahmed K, Yablinsky C A, Schulte A, et al. Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics [J]. Model. Simul. Mater. Sci. Eng., 2013, 21: 065005
doi: 10.1088/0965-0393/21/6/065005
[8] Moelans N, Blanpain B, Wollants P. Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations [J]. Acta Mater., 2007, 55: 2173
doi: 10.1016/j.actamat.2006.11.018
[9] Moelans N, Blanpain B, Wollants P. A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles [J]. Acta Mater., 2005, 53: 1771
doi: 10.1016/j.actamat.2004.12.026
[10] Chang K, Feng W M, Chen L Q. Effect of second-phase particle morphology on grain growth kinetics [J]. Acta Mater., 2009, 57: 5229
doi: 10.1016/j.actamat.2009.07.025
[11] Hötzer J, Rehn V, Rheinheimer W, et al. Phase-field study of pore-grain boundary interaction [J]. J. Ceram. Soc. Jpn., 2016, 124: 329
doi: 10.2109/jcersj2.15266
[12] Kundin J, Sohaib H, Schiedung R, et al. Phase-field modelling of pores and precipitates in polycrystalline systems [J]. Model. Simul. Mater. Sci. Eng., 2018, 26: 065003
doi: 10.1088/1361-651X/aacb94
[13] Nichols F A. Theory of grain growth in porous compacts [J]. J. Appl. Phys., 1966, 37: 4599
doi: 10.1063/1.1708102
[14] Brook R J. Pore-grain boundary interactions and grain growth [J]. J. Am. Ceram. Soc., 1969, 52: 56
doi: 10.1111/jace.1969.52.issue-1
[15] Riedel H, Svoboda J. A theoretical study of grain growth in porous solids during sintering [J]. Acta Metall. Mater., 1993, 41: 1929
doi: 10.1016/0956-7151(93)90212-B
[16] Petrishcheva E, Renner J. Two-dimensional analysis of pore drag and drop [J]. Acta Mater., 2005, 53: 2793
doi: 10.1016/j.actamat.2005.02.040
[17] Klinger L, Rabkin E, Shvindlerman L S, et al. Grain growth in porous two-dimensional nanocrystalline materials [J]. J. Mater. Sci., 2008, 43: 5068
doi: 10.1007/s10853-008-2678-y
[18] Fan D, Chen L Q. Computer simulation of grain growth using a continuum field model [J]. Acta Mater., 1997, 45: 611
doi: 10.1016/S1359-6454(96)00200-5
[19] Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution [J]. Calphad, 2008, 32: 268
doi: 10.1016/j.calphad.2007.11.003
[20] Krivilyov M D, Mesarovic S D, Sekulic D P. Phase-field model of interface migration and powder consolidation in additive manufacturing of metals [J]. J. Mater. Sci., 2017, 52: 4155
doi: 10.1007/s10853-016-0311-z
[21] Lin M Z, Zhang R J, Fang W, et al. Phase field simulation of sintering process in biphasic porous material [J]. Acta Metall. Sin., 2012, 48: 1207
doi: 10.3724/SP.J.1037.2012.00353
(刘明治, 张瑞杰, 方 伟等. 相场法模拟两相多孔组织烧结 [J]. 金属学报, 2012, 48: 1207)
doi: 10.3724/SP.J.1037.2012.00353
[22] Chen Y, Kang X H, Xiao N M, et al. Phase field modelling of grain growth in polycrystalline material [J]. Acta Phys. Sin., 2009, 58: 124
(陈 云, 康秀红, 肖纳敏等. 多晶材料晶粒生长粗化过程的相场方法模拟 [J]. 物理学报, 2009, 58: 124)
doi: 10.7498/aps.58.124
[23] Jing X N, Ni Y, He L H, et al. 2-D phase-field simulation of pore evolution in sintering ceramics [J]. J. Inorg. Mater., 2002, 17: 1078
(景晓宁, 倪 勇, 何陵辉等. 陶瓷烧结过程孔隙演化的二维相场模拟 [J]. 无机材料学报, 2002, 17: 1078)
[24] Deng J. A phase field model of sintering with direction-dependent diffusion [J]. Mater. Trans., 2012, 53: 385
doi: 10.2320/matertrans.M2011317
[25] Sun Z Y, Yang C, Liu W B. Phase-field simulations of the sintering process of uranium dioxide [J]. Acta Metall. Sin., 2020, 56: 1295
(孙正阳, 杨 超, 柳文波. UO2烧结过程的相场模拟 [J]. 金属学报, 2020, 56: 1295)
[26] Lu D, Jiang P, Xu Z Z. Solid State Physics [M]. 2nd Ed., Shanghai: Shanghai Scientific and Technical Publishers, 2010: 364
(陆 栋, 蒋 平, 徐至中. 固体物理学 [M]. 第2版. 上海: 上海科学技术出版社, 2010: 364)
[27] Chen L Q, Fan D N. Computer simulation model for coupled grain growth and Ostwald ripening—Application to Al2O3-ZrO2 two-phase systems [J]. J. Am. Ceram. Soc., 1996, 79: 1163
doi: 10.1111/jace.1996.79.issue-5
[28] Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
doi: 10.1016/0001-6160(61)90182-1
[29] Moelans N, Blanpain B, Wollants P. Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems [J]. Phys. Rev., 2008, 78B: 024113
[30] Hsueh C H, Evans A G, Coble R L. Microstructure development during final/intermediate stage sintering—I. Pore/grain boundary separation [J]. Acta Metall., 1982, 30: 1269
doi: 10.1016/0001-6160(82)90145-6
[31] Ahmed K, Allen T, El-Azab A. Phase field modeling for grain growth in porous solids [J]. J. Mater. Sci., 2016, 51: 1261
doi: 10.1007/s10853-015-9107-9
[32] Ahmed K, Pakarinen J, Allen T, et al. Phase field simulation of grain growth in porous uranium dioxide [J]. J. Nucl. Mater., 2014, 446: 90
doi: 10.1016/j.jnucmat.2013.11.036
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[5] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[7] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[8] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[9] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[10] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[11] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[12] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[13] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[14] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[15] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
No Suggested Reading articles found!