Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 482-488    DOI: 10.3724/SP.J.1037.2010.00568
论文 Current Issue | Archive | Adv Search |
STUDY OF DYNAMIC RECRYSTALLIZATION OF A Cu-BASED ALLOY BFe10-1-1 WITH CONTINUOUS COLUMNAR GRAINS
YU Junwu, LIU Xuefeng, XIE Jianxin
Key Laboratory for Advanced Material Processing (Ministry of Education), University of Science and Technology Beijing, Beijing 100083
Cite this article: 

YU Junwu LIU Xuefeng XIE Jianxin. STUDY OF DYNAMIC RECRYSTALLIZATION OF A Cu-BASED ALLOY BFe10-1-1 WITH CONTINUOUS COLUMNAR GRAINS. Acta Metall Sin, 2011, 47(4): 482-488.

Download:  PDF(1227KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Dynamic recrystallization behavior of a Cu-based alloy BFe10-1-1 with continuous columnar grains was investigated by hot compression test. Specimen was compressed in the temperature range of 750 to 900℃ and the strain rate range of 0.01 to 10 s-1. The results indicate that the dynamic recrystallization temperature of the tested alloy is about 850 ℃ and the thermal activated energy Q is 427.937 kJ/mol, higher than those of the alloy with equiaxial grains. When ln Z<43, dynamic recrystallization always happens in the alloys. When\linebreak ln Z>51, dynamic recrystallization can not occur. When 43≦ln Z≦51, dynamic recrystallization may happen at 850 or 900 ℃, may not happen at 750 or 800 ℃, which can serve as the critical regions of the alloy for dynamic recrystallization. Such effect is probably ascribe to the difference in the dynamic recrystallization mechanisms of the continuous columnar grained materials and ordinary polycrystalline materials. It is observed that the dynamically recrystallized area in the sample has expanded when the strain rate increases. Dynamic recrystallization preferentially nucleates at grain boundary in the form of grain-boundary bulging. Twins form in the recrystallized grains and are evolved into grain belt by “twinning dynamic recrystallization”.
Key words:  Cu-Ni-Fe alloy      continuous columnar grain      high temperature compression deformation      dynamic recrystallization     
Received:  25 October 2010     
ZTFLH: 

TG146.1

 
Fund: 

Supported by National Basic Research Program of China (No.2011CB606300), National Natural Science Foundation of China (Nos. 50674008 and 50634010) and the Fundamental Research Funds for the Central Universities

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00568     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/482

[1] Xie J X, Huang J H, Kang Y L, Mao W M, Qu X H, Ren X P, Wang Z D, Wu C J, Zhou C. Advanced Processing Technologies of Materials. Beijing: Metallurgical Industry Press, 2004: 85

(谢建新, 黄继华, 康永林, 毛卫民, 曲选辉, 任学平, 王自东, 吴春京, 周成. 材料加工新技术与新工艺. 北京: 冶金工业出版社, 2004: 85)

[2] Liu X F, Wu Y H, Xie J X. Sci China, 2009; 52E: 2232

[3] Zhang H, Xie J X, Wang Z D. J Univ Sci Technol Beijing (Engl Ed), 2004; 11: 240

[4] Efird K D. Corrosion, 1975; 31: 77

[5] Yan Z M, Li X T, Qi K, Cao Z Q, Zhang X L, Li T J. Mater Des, 2009; 30: 2072

[6] Gan C L, Liu X F, Huang H Y, Xie J X. Acta Metall Sin, 2010; 46: 1549

(甘春雷, 刘雪峰, 黄海友, 谢建新. 金属学报, 2010; 46: 1549)

[7] Cui W F, Hong Q, Liu C M, Zhou L. J Northeast Univ (Nat Sci), 2003; 24: 572

(崔文芳, 洪权, 刘春明, 周 廉. 东北大学学报(自然科学版), 2003; 24: 572)

[8] Tang R Z. Physicometallurgical Foundation. Beijing: Metallurgical Industry Press, 1997: 283

(唐仁政. 物理冶金基础. 北京: 冶金工业出版社, 1997: 283)

[9] Zhang H, Xie J X, Wang Z D, Wang H. Mater Mech Eng, 2004; 28(2): 31

(张鸿, 谢建新, 王自东, 王浩. 机械工程材料, 2004; 28(2): 31)

[10] Shen G, Semiatantin S L, Altan T. J Mater Process Technol, 1993; 36: 303

[11] Poliak E I, Jonas J J. ISIJ Int, 2003; 43: 684

[12] Poliak E I, Jonas J J. Acta Mater, 1996; 44: 127

[13] Imbert C, Ryan N D, McQueen H J. Metall Mater Trans, 1984; 15A: 185

[14] Yuan H, Liu W C. Mater Sci Eng, 2005; A408: 281

[15] Zhou J. Master Dissertation, Center South University, Changsha, 2007

(周佳. 中南大学硕士学位论文, 长沙, 2007)

[16] Lin G Y, Zhou J, Sun L P, Zhang Z F, Zhang S H. Mater Sci Technol, 2009; 17: 441

(林高用, 周佳, 孙利平, 张振峰, 张胜华. 材料科学与工艺, 2009; 17: 441)

[17] Liu C M, Liu Z J, Zhu X R, Zhou H T. Chin J Nonferr Met, 2006; 16: 1

(刘楚明, 刘子娟, 朱秀荣, 周海涛. 中国有色金属学报, 2006; 16: 1)

[18] Gu Y F, Lin D L, Shan A D, Chen J G, Hu F, Cao H Q. Acta Metall Sin, 1998; 34: 351

(谷月峰, 林栋梁, 单爱党, 陈家光, 胡凡, 曹涵清. 金属学报, 1998; 34: 351)

[19] Hu J, Lin D L. Acta Metall Sin, 2004; 40: 489

(胡静, 林栋梁. 金属学报, 2004; 40: 489)

[20] Zhang L W, Lu Y, Deng X H, Pei J B, Zhang G L. J Dalian Univ Technol, 2008; 48: 351

(张立文, 卢瑜, 邓小虎, 裴继斌, 张国梁. 大连理工大学学报, 2008; 48: 351)

[21] Zhang H. PhD Thesis, University of science and Technology Beijing, 2003

(张 鸿. 北京科技大学博士学位论文, 2003)
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[6] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[7] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[8] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[9] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[10] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[11] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[12] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[13] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[14] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[15] Tao WANG, Zhipeng WAN, Yu SUN, Zhao LI, Yong ZHANG, Lianxi HU. Dynamic Softening Behavior and Microstructure Evolution of Nickel Base Superalloy[J]. 金属学报, 2018, 54(1): 83-92.
No Suggested Reading articles found!