Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 489-496    DOI: 10.3724/SP.J.1037.2010.00547
论文 Current Issue | Archive | Adv Search |
EFFECTS OF NOVEL Q-P-T AND TRADITIONAL Q-T  PROCESSES ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF MARTENSITIC STEELS WITH DIFFERENT CARBON CONTENT
ZHANG Ke1), XU Weizong1), GUO Zhenghong1), RONG Yonghua1), WANG Maoqiu2), DONG Han2)
1) School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2) National Engineering Research Center of Advanced Steel Technology, Central Iron-Steel Research Institute, Beijing 100081
Cite this article: 

ZHANG Ke XU Weizong GUO Zhenghong RONG Yonghua WANG Maoqiu DONG Han. EFFECTS OF NOVEL Q-P-T AND TRADITIONAL Q-T  PROCESSES ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF MARTENSITIC STEELS WITH DIFFERENT CARBON CONTENT. Acta Metall Sin, 2011, 47(4): 489-496.

Download:  PDF(1492KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Compared with traditional quenching and tempering (Q-T) treatment, the product of strength and elongation of the carbon steel can be enhanced significantly by novel quenching-partitioning-tempering (Q-P-T) treatment, especially for the medium carbon steel. Based on the tensile results, the product of strength and elongation of the Fe-0.42C-1.46Mn-1.58Si-0.028Nb specimen treated by Q-P-T, is up to 31627 MPa?% with elongation 20.3\%, which not only is higher than the specimen treated by Q-T process, but also meets the mechanical properties predicted of next generation advanced high strength steel. Microstructural analysis indicates the differences in Q-T and Q-P-T process lie on the amount of retained austenite and its size distribution as well as the size range of lath martensite. The former results in the low amount (<3%) of thin film-like austenite in addition to nonuniform martensite size, while the later results in the high amount of thick flake-like austenite accompanying uniform martensite size. Therefore, the higher barrier for micro-crack propagation and the better plastic deformation ability of advanced high strength steel (AHSS) can be obtained by Q-P-T treatment.
Key words:  Q-P-T process      advanced high strength steel      retained austenite      product of strength and elongation     
Received:  14 October 2010     
ZTFLH: 

TG142

 
Fund: 

Supported by National Natural Science Foundation of China (No.51031001)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00547     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/489

[1] Sakuma Y. In: Baker M A ed., Proc Int Conf on Advanced High Strength Sheet Steels for Automotive Applications. Warrendale: Association for Iron–Steel Technology, 2004: 11

[2] Sugimoto K, Kobayshi M, Hashimoto S. Metall Trans, 1992; 23: 3085

[3] Speer J G, Matlock D K, Cooman B C, Schroch J G. Acta Mater, 2003; 51: 2661

[4] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426–432: 1089

[5] Wang X D, Zhong N, Rong Y H, Xu Z Y. J Mater Res, 2009; 24: 261

[6] Matlock D K, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels. Korea: The Korean Institute of Metals and Materials, 2006: 774

[7] Mileiko S T, Speer J G. J Mater Sci, 1969; 4: 974

[8] Hsu T Y (Xu Z Y). Mater Sci Forum, 2007; 561: 2283

[9] Zhong N, Wang X D, Rong Y H, Wang L. Mater Sci Eng, 2009; 506: 111

[10] Speer J G, Matlock D K, DeCooman B C, Schroch J G. Acta Mater, 2003; 51: 2611

[11] Koistinen D P, Marburger R E. Acta Metall, 1959; 7: 59

[12] Fan X. Metallic X–ray Physics. Beijing: Mechanical Industry Press, 1989: 159

(范雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)

[13] Durnin J, Ridal K A. J Iron Steel Inst, 1968; 1: 60

[14] Morris Jr J W, Lee C S, Guo Z. ISIJ Int, 2003; 43: 410

[15] Guo Z, Lee C S, Morris Jr J W. Acta Mater, 2004; 52: 5511

[16] Morito S, Tanaka H, Konishi R, Furuhara T, Maki T. Acta Mater, 2003; 51: 1789

[17] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279

[18] Lu L, Sui M L, Lu K. Science, 2000; 287: 1463
[1] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[2] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[3] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[4] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[5] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[6] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[7] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[8] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[9] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[10] Long HUANG,Xiangtao DENG,Jia LIU,Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. 金属学报, 2017, 53(3): 316-324.
[11] Xiaolu GUI,Baoxiang ZHANG,Guhui GAO,Ping ZHAO,Bingzhe BAI,Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS[J]. 金属学报, 2016, 52(9): 1036-1044.
[12] Zhenjia XIE,Chengjia SHANG,Wenhao ZHOU,Binbin WU. EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL[J]. 金属学报, 2016, 52(2): 224-232.
[13] Liansheng CHEN, Jianyang ZHANG, Yaqiang TIAN, Jinying SONG, Yong XU, Shihong ZHANG. EFFECT OF Mn PRE-PARTITIONING ON C PARTITIONING AND RETAINED AUSTENITE OF Q&P STEELS[J]. 金属学报, 2015, 51(5): 527-536.
[14] Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL[J]. 金属学报, 2015, 51(5): 537-544.
[15] ZHOU Wenhao, XIE Zhenjia, GUO Hui, SHANG Chengjia. REGULATION OF MULTI-PHASE MICROSTRUCTURE AND MECHANICAL PROPERTIES IN A 700 MPa GRADE LOW CARBON LOW ALLOY STEEL WITH GOOD DUCTILITY[J]. 金属学报, 2015, 51(4): 407-416.
No Suggested Reading articles found!