Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (11): 1379-1390    DOI: 10.3724/SP.J.1037.2010.00468
论文 Current Issue | Archive | Adv Search |
CORROSION MECHANISMS OF STAINLESS STEEL AND NICKEL BASE ALLOYS IN HIGH TEMPERATURE HIGH PRESSURE WATER
HAN En-Hou1, 2) , WANG Jianqiu1, 2) , WU Xinqiang1, 2) , KE Wei
1) State Key Laboratory for Corrosion and Protection of Metals, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

HAN En-Hou WANG Jianqiu WU Xinqiang KE Wei. CORROSION MECHANISMS OF STAINLESS STEEL AND NICKEL BASE ALLOYS IN HIGH TEMPERATURE HIGH PRESSURE WATER. Acta Metall Sin, 2010, 46(11): 1379-1390.

Download:  PDF(2405KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The electrochemical corrosion behavior and the chemical components, structures and electronic characters of oxide films for stainless steels and Ni base alloys used in nuclear power plant were reviewed. The effects of water chemistry and microstructure of materials on oxide films were analyzed in order to relate the oxide film properties with electrochemical behaviors. The corrosion mechanism of the materials used in high temperature pressurized water is different with that used in room temperature water. The corrosion mechanism of the materials in high temperature pressurized water is controlled by electrochemistry and oxidation, whereas in room temperature water it is controlled only by electrochemistry. Oxide films has double-layer structure. The outer layer is porous, and the inner layer is composed by nano-crystalline and has semiconductivity which controlled the corrosion process. The microstructure, chemical composition, surface status of materials and water chemistry parameters are the key parameters which affect corrosion. The wedging stress of oxide inside the flaw could induce localized tensile stress at the tip of the flaw, which caused stress corrosion cracking initiation and propagation even in macro-compressive stressed region. The wedging stress of oxide is the key factor to induce stress corrosion cracking in compressive stressed region.
Key words:  stainless steel      nickle base alloy      corrosion      stress corrosion      electrochemistry      nuclear power plant      surface oxide film     
Received:  15 September 2010     
Fund: 

Supported by National Basic Research Program of China (No.2006CB6050) and National Science and Technology Major Project (No.2010ZX06004-009)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00468     OR     https://www.ams.org.cn/EN/Y2010/V46/I11/1379

[1] Macdonald D D, Scott A C, Wentrcek P. J Electrochem Soc, 1979; 126: 1618 [2] Macdonald D D, Liu C, Michael M P. In: Kearns J R, Scully J R, eds., Electrochemical Noise Measurements on Carbon and Stainless Steel in High Subcritical and Supercritical Aqueous Environments. ASTM STP 1277, 1996: 247 [3] Lvov S N, Zhou X Y, Macdonald D D. J Electroanal Chem, 1999; 463: 146 [4] Zhou X Y, Lvov S N, Wei X J, Benning L G, Macdonald D D. Corros Sci, 2002; 44: 841 [5] Zhang L, Han E H, Ke W, Guan H. Chin Pat, ZL 02132544.8, 2005 (张 丽, 韩恩厚, 柯伟, 关辉. 中国专利, ZL 02132544.8, 2005) [6] Zhang L, Han E H, Ke W, Guan H. Chin Pat, ZL 02274025.2, 2003 (张 丽, 韩恩厚, 柯 伟, 关 辉. 中国实用新型专利, ZL 02274025.2, 2003) [7] Guan H, Zhang L, Han E H, Ke W. Chin Pat, ZL 02274026.0, 2003 (关辉, 张丽, 韩恩厚, 柯 伟. 中国实用新型专利, ZL 02274026.0, 2003) [8] Sun H, Wu X Q, Han E H. Chin Pat, CN101470093, 2009 (孙华, 吴欣强, 韩恩厚. 中国专利, CN101470093, 2009) [9] Sun H, Wu X Q, Han E H. Chin Pat, CN101470094, 2009 (孙华, 吴欣强, 韩恩厚. 中国专利, CN101470094, 2009) [10] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston: NACE International, 1974: 121 [11] Huang J B, Wu X Q, Han E H. Corros Sci, 2009; 51: 2976 [12] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2840 [13] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2565 [14] Sun M C, Wu X Q, Zhang Z E, Han E H. Corros Sci, 2009; 51: 1069 [15] Kuang W J, Han E H, Wu X Q, Rao J C. Corros Sci, 2010; 52: 3654 [16] Sun M C, Wu X Q, Han E H, Rao J C. Scr Mater, 2009; 61: 996 [17] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309 [18] Gao X, Wu X Q, Guan H, Han E H. J Supercrit Fluids, 2007; 42: 157 [19] Morrison S R. Electrochemistry at Semiconductors and Oxidized Metal Electrodes. New York: Plenum Press, 1980: 113 [20] Macdonald D D. J Electrochem Soc, 1992; 139: 3434 [21] Hakiki N E, Montemor M F, Ferreira M G S, Belo M D. Corros Sci, 2000; 42: 687 [22] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931 [23] Meng F J, Wang J Q, Han E H, Ke W. Corros Sci, 2010; 52: 927 [24] Hou J, Wang J Q, Han E H, Ke W. Mater Sci Eng, 2009; A518: 19 [25] Meng F J, Wang J Q, Han E H, Ke W. Corros Sci, 2009; 51: 2761 [26] Meng F J, Han E H, Wang J Q, Zhang Z M, Ke W. Electrochem Acta, 2010, doi:10.1016/j.electacta.2010.08.028 [27] Wang J Q, Zhang Z M, Han E H, Ke W. 6th SG Conference, Toronto, 2009 [28] Dan T C, Shoji T, Lu Z P, Sakaguchi K, Wang J Q, Han E H, KeW. Corros Sci, 2010; 52: 1228 [29] Hou J, Peng Q J, Sakaguchi K, Takeda Y, Kuniya J, Shoji T. Corros Sci, 2010; 52: 1098
[1] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[2] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[3] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[6] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[7] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[8] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[9] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[12] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[13] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[14] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[15] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
No Suggested Reading articles found!