CORROSION MECHANISMS OF STAINLESS STEEL AND NICKEL BASE ALLOYS IN HIGH TEMPERATURE HIGH PRESSURE WATER
HAN En-Hou1, 2) , WANG Jianqiu1, 2) , WU Xinqiang1, 2) , KE Wei
1) State Key Laboratory for Corrosion and Protection of Metals, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article:
HAN En-Hou WANG Jianqiu WU Xinqiang KE Wei. CORROSION MECHANISMS OF STAINLESS STEEL AND NICKEL BASE ALLOYS IN HIGH TEMPERATURE HIGH PRESSURE WATER. Acta Metall Sin, 2010, 46(11): 1379-1390.
Abstract The electrochemical corrosion behavior and the chemical components, structures and electronic characters of oxide films for stainless steels and Ni base alloys used in nuclear power plant were reviewed. The effects of water chemistry and microstructure of materials on oxide films were analyzed in order to relate the oxide film properties with electrochemical behaviors. The corrosion mechanism of the materials used in high temperature pressurized water is different with that used in room temperature water. The corrosion mechanism of the materials in high temperature pressurized water is controlled by electrochemistry and oxidation, whereas in room temperature water it is controlled only by electrochemistry. Oxide films has double-layer structure. The outer layer is porous, and the inner layer is composed by nano-crystalline and has semiconductivity which controlled the corrosion process. The microstructure, chemical composition, surface status of materials and water chemistry parameters are the key parameters which affect corrosion. The wedging stress of oxide inside the flaw could induce localized tensile stress at the tip of the flaw, which caused stress corrosion cracking initiation and propagation even in macro-compressive stressed region. The wedging stress of oxide is the key factor to induce stress corrosion cracking in compressive stressed region.
[1] Macdonald D D, Scott A C, Wentrcek P. J Electrochem Soc, 1979; 126: 1618
[2] Macdonald D D, Liu C, Michael M P. In: Kearns J R, Scully J R, eds., Electrochemical Noise Measurements on Carbon and Stainless Steel in High Subcritical and Supercritical Aqueous Environments. ASTM STP 1277, 1996: 247
[3] Lvov S N, Zhou X Y, Macdonald D D. J Electroanal Chem, 1999; 463: 146
[4] Zhou X Y, Lvov S N, Wei X J, Benning L G, Macdonald D D. Corros Sci, 2002; 44: 841
[5] Zhang L, Han E H, Ke W, Guan H. Chin Pat, ZL 02132544.8, 2005
(张 丽, 韩恩厚, 柯伟, 关辉. 中国专利, ZL 02132544.8, 2005)
[6] Zhang L, Han E H, Ke W, Guan H. Chin Pat, ZL 02274025.2, 2003
(张 丽, 韩恩厚, 柯 伟, 关 辉. 中国实用新型专利, ZL 02274025.2, 2003)
[7] Guan H, Zhang L, Han E H, Ke W. Chin Pat, ZL 02274026.0, 2003
(关辉, 张丽, 韩恩厚, 柯 伟. 中国实用新型专利, ZL 02274026.0, 2003)
[8] Sun H, Wu X Q, Han E H. Chin Pat, CN101470093, 2009
(孙华, 吴欣强, 韩恩厚. 中国专利, CN101470093, 2009)
[9] Sun H, Wu X Q, Han E H. Chin Pat, CN101470094, 2009
(孙华, 吴欣强, 韩恩厚. 中国专利, CN101470094, 2009)
[10] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston: NACE International, 1974: 121
[11] Huang J B, Wu X Q, Han E H. Corros Sci, 2009; 51: 2976
[12] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2840
[13] Sun H, Wu X Q, Han E H. Corros Sci, 2009; 51: 2565
[14] Sun M C, Wu X Q, Zhang Z E, Han E H. Corros Sci, 2009; 51: 1069
[15] Kuang W J, Han E H, Wu X Q, Rao J C. Corros Sci, 2010; 52: 3654
[16] Sun M C, Wu X Q, Han E H, Rao J C. Scr Mater, 2009; 61: 996
[17] Sun M C, Wu X Q, Zhang Z E, Han E H. J Supercrit Fluids, 2008; 47: 309
[18] Gao X, Wu X Q, Guan H, Han E H. J Supercrit Fluids, 2007; 42: 157
[19] Morrison S R. Electrochemistry at Semiconductors and Oxidized Metal Electrodes. New York: Plenum Press, 1980: 113
[20] Macdonald D D. J Electrochem Soc, 1992; 139: 3434
[21] Hakiki N E, Montemor M F, Ferreira M G S, Belo M D. Corros Sci, 2000; 42: 687
[22] Staehle R W, Gorman J A. Corrosion, 2003; 59: 931
[23] Meng F J, Wang J Q, Han E H, Ke W. Corros Sci, 2010; 52: 927
[24] Hou J, Wang J Q, Han E H, Ke W. Mater Sci Eng, 2009; A518: 19
[25] Meng F J, Wang J Q, Han E H, Ke W. Corros Sci, 2009; 51: 2761
[26] Meng F J, Han E H, Wang J Q, Zhang Z M, Ke W. Electrochem Acta, 2010, doi:10.1016/j.electacta.2010.08.028
[27] Wang J Q, Zhang Z M, Han E H, Ke W. 6th SG Conference, Toronto, 2009
[28] Dan T C, Shoji T, Lu Z P, Sakaguchi K, Wang J Q, Han E H, KeW. Corros Sci, 2010; 52: 1228
[29] Hou J, Peng Q J, Sakaguchi K, Takeda Y, Kuniya J, Shoji T. Corros Sci, 2010; 52: 1098