Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (5): 561-568    DOI: 10.3724/SP.J.1037.2009.00472
论文 Current Issue | Archive | Adv Search |
ONE-STEP DEPOSITION AND INTERFACIAL ADHESIVE STRENGTH OF THE MULTILAYER SYSTEM WITH A DIFFUSION BARRIER
LI Weizhou1; 2);  WANG Qimin1);  GONG Jun1);  SUN Chao1);  JIANG Xin3)
1) State Key Laboratory for Corrosion and Protection; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2) Key Laboratory of New Processing Technology for Nonferrous Metals and Materials; Ministry of Education; Guangxi University; Nanning 530004
3) Institute of Materials Engineering; University of Siegen; Siegen 57076; Germany
Cite this article: 

LI Weizhou WANG Qimin GONG Jun SUN Chao JIANG Xin. ONE-STEP DEPOSITION AND INTERFACIAL ADHESIVE STRENGTH OF THE MULTILAYER SYSTEM WITH A DIFFUSION BARRIER. Acta Metall Sin, 2010, 46(5): 561-568.

Download:  PDF(1202KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

M-Cr-Al-Y (M=Ni and/or Co) coatings with the good comprehensive property among anti-oxidation, anti-corrosion and mechanical properties have been widely used for the protection for the gas turbine components. However, after a long-term thermal exposure to high temperature atmosphere in service, the coatings are rapidly degraded. The main cause is ascribed to the intensive element interdiffusion between the coating and the substrate. To suppress the interdiffusion, addition of a diffusion barrier (DB) is required at the interface of the overlayer and the substrate. However, M-Cr-Al-Y coating system with a ceramic diffusion barrier prepared by a conventional two-step arc ion plating (AIP) on the superalloy substrate would reduce the interfacial adhesive strength. In this paper, the multilayer system of Ni-Cr-Al-Y-Si overlayer with a DB and a bond coat (BC) was deposited on the DSM11 substrate by one-step AIP. The anti--oxidation property, the anti-diffusion ability of the barrier and the interfacial adhesive strength of the multilayer system were investigated. The results indicate that the multilayer can provide more effective protection for the DSM11 substrate than the single coating at high temperature. After 100 h thermal exposure at 1050 ℃, the surface Al2O3 scales are continuous, dense, and only very little amounts of alloy elements diffused from the substrate is detected in the overlayer. After\linebreak 100 cyc cycles between 1050 ℃ and room temperature (RT), the barrier layer has still well adhesive to the overlayer and the substrate. The tensile adhesion test shows that the interfacial adhesive strength is 63.6 MPa for the annealed multilayer system, which is about 20 MPa higher than that of the coating system with a DB on the DSM11 substrate deposited by the two-step AIP. The one-step AIP method can increase the interfacial adhesive strength and improve the anti-oxidation performance of the multilayer with DB.

Key words:  diffusion barrier (DB)      coating      anti-oxidation      interfacial adhesive strength      one-step deposition     
Received:  08 July 2009     
Fund: 

Supported by National Natural Science Foundation of China (No.50571101) and Guangxi Science Foundation (No.0731013)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00472     OR     https://www.ams.org.cn/EN/Y2010/V46/I5/561

[1] Knotek O, Loffler F, Beele W. Surf Coat Technol, 1993; 61: 6
[2] Li S S, Song J X, Zhou C G, Gong S K, Han Y F. Intermetallics, 2005; 13: 309
[3] Sloof W G. Self Healing in Coating at High Temperatures: Self Healing Materials. Netherlands: Springer, 2007: 309
[4] Nicholls J R. MRS Bull, 2003; 28: 659
[5] Wang Q M,Wu Y N, Ji A L, Ke P L, Sun C, Huang R F, Wen L S. Acta Metall Sin, 2004; 40: 83
(王启民, 武颖娜, 纪爱玲, 柯培玲, 孙超, 黄荣芳, 闻立时. 金属学报, 2004; 40: 83)

[6] Li W Z, Yao Y, Wang Q M, Bao Z B, Gong J, Sun C, Jiang X. J Mater Res, 2008; 23: 341
[7] Li W Z, Yao Y, Li Y Q, Li J B, Gong J, Sun C, Jiang X. Mater Sci Eng, 2009; A512: 117
[8] Yao Y, Li W Z, Wang Q M, Gong J, Sun C, Li J B. Acta Metall Sin, 2008; 44: 876
(姚勇, 李伟洲, 王启民, 宫骏, 孙 超, 李家宝. 金属学报, 2008; 44: 876)

[9] Zhang K, Wang Q M, Sun C, Wang F H. Corros Sci, 2008; 50: 1707
[10] Sun C, Wang Q M, Tang Y J, Guan Q F, Gong J, Wen L S. Acta Metall Sin, 2005; 41: 1167
(孙超, 王启民, 唐永吉, 关庆丰, 宫 骏, 闻立时. 金属学报. 2005; 41: 1167)

[11] Ren X, Wang F H. Surf Coat Technol, 2006; 201: 30
[12] Yao Y. Master Dissertation. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008
(姚勇. 中国科学院金属研究所硕士学位论文, 沈阳, 2008)
[13] Peng X, Wang F H, Clark D K. Acta Metall Sin, 2003; 39: 1055
(彭 晓, 王福会, Clarke D R. 金属学报. 2003; 39: 1055)
[14] Cremer R, Witthaut M, Reichert K, Schierling M, Neuschutz D. Surf Coat Technol, 1998; 108–109: 48
[15] Xie L, Sohn Y, Jordan E H, Gell M. Surf Coat Technol, 2003; 176: 57
[16] Evans A G, Mumm D R, Hutchinson J W, Meier G H, Pettit F S. Prog Mater Sci, 2001; 46: 505

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[3] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[4] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[5] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[6] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[7] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[8] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[9] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
[10] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[11] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[12] WANG Haowei, ZHAO Dechao, WANG Mingliang. A Review of the Corrosion Protection Technology on In SituTiB2/Al Composites[J]. 金属学报, 2022, 58(4): 428-443.
[13] ZHANG Shihong, HU Kai, LIU Xia, YANG Yang. Corrosion-Erosion Mechanism and Research Prospect of Bare Materials and Protective Coatings for Power Generation Boiler[J]. 金属学报, 2022, 58(3): 272-294.
[14] REN Yuan, DONG Xinyuan, SUN Hao, LUO Xiaotao. Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition[J]. 金属学报, 2022, 58(2): 206-214.
[15] CUI Hongzhi, JIANG Di. Research Progress of High-Entropy Alloy Coatings[J]. 金属学报, 2022, 58(1): 17-27.
No Suggested Reading articles found!