Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (5): 569-574    DOI: 10.3724/SP.J.1037.2009.00566
论文 Current Issue | Archive | Adv Search |
EARLY INTERFACIAL REACTION AND UNDERCOOLING SOLIDIFICATION BEHAVIOR  OF Sn-3.5Ag/Cu SYSTEM
ZHOU Minbo; LI Xunping; MA Xiao; ZHANG Xinping
School of Materials Science and Engineering; South China University of Technology; Guangzhou 510640
Cite this article: 

ZHOU Minbo LI Xunping MA Xiao ZHANG Xinping. EARLY INTERFACIAL REACTION AND UNDERCOOLING SOLIDIFICATION BEHAVIOR  OF Sn-3.5Ag/Cu SYSTEM. Acta Metall Sin, 2010, 46(5): 569-574.

Download:  PDF(749KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

For electronic packaging technologies using lead-free solders, one of the major problems related to reliability for the solder interconnects is the existence of the interfacial intermetallic compound (IMC). The interfacial failures between IMC and solder alloy often lead to loss of function in interconnects and result in product failure. Therefore, considerable attention has been focused on study of formation, growth and control of IMC during solder process. In this paper, the early interfacial reaction in Sn-3.5Ag/Cu (UBM) system and the system's melting and solidification characteristics were investigated using differential scanning calorimeter incorporating with reflow process. The results show that during heating the diffusion of Cu atom into Sn-3.5Ag solder results in the formation of Sn-Ag-Cu ternary alloy at the interface before melting of Sn-3.5Ag solder and the ternary eutectic system melts at a temperature nearly 4 ℃ lower than Sn-3.5Ag solder's melting temperature. The early interfacial reaction also leads to earlier wetting of the liquid solder alloy at the interface, and consequently brings about formation of scallop-type Cu-Sn intermetallics layer with a certain thickness as well as makes the initial Sn-3.5Ag/Cu system changed into Sn-Ag-Cu/Cu system, which makes the undercooling of the solder alloy decrease obviously.

Key words:  lead-free solder      interfacial reaction      intermetallics      undercooling     
Received:  31 August 2009     
Fund: 

Supported by Program of New Century Excellent Talents in University (No.NCET-04-0824) and Science and Technology Major Project of Guangdong Province (No.2009A080204005)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00566     OR     https://www.ams.org.cn/EN/Y2010/V46/I5/569

[1] Laurila T, Vuorinen V, Kivilahti J K. Mater Sci Eng, 2005; R49: 1
[2] Tu K N. Mater Chem Phys, 1996; 46: 217
[3] Kajihara M. Acta Mater, 2004; 52: 1193
[4] Sakama T, Kajihara M. J Alloy Compd, 2009; 475: 608
[5] Zeng K, Tu K N. Mater Sci Eng, 2002; R38: 55
[6] Gong J C, Liu C Q, Conway P P, Silberschmidt V V. Acta Mater, 2008; 56: 4291
[7] Gong J C, Liu C Q, Conway P P, Silberschmidt V V. Scr Mater, 2009; 60: 333
[8] Deng X, Piotrowski G, Williams J J, Chawla N. J Electron Mater, 2003; 32: 1403
[9] Yao P, Liu P, Liu J. Microelectron Eng, 2009; 86: 1969
[10] Lehman L P, Kinyanjui R K, Zavalij L, Zribi A, Cotts E J. In: Howell W, Noctor D, eds., Proceedings of 53rd Electronic Components and Technology Conference, New Orleans, LA: IEEE, 2003: 1215
[11] Kang S K, Choi W K, Shih D Y, Henderson D W, Gosselin T, Sarkhel A, Goldsmith C, Puttlitz K J. In: Howell W, Noctor D, eds., Proceedings of 53rd Electronic Components and Technology Conference, New Orleans, LA: IEEE, 2003: 64
[12] Kang S K, Shih D Y, Leonard D, Henderson D W, Gosselin T, Cho S I, Yu J, Choi W K. J Miner Met Mater Soc, 2004; 56: 34
[13] Kim K S, Huh S H, Suganuma K. Microelectron Relia, 2003; 43: 259
[14] KimD H, Cho M G, Seo S K, Lee HM. J Electron Mater, 2009; 38: 39
[15] Cho M G, Kim H Y, Seo S K, Lee H M. Appl Phys Lett, 2009; 95: 021905
[16] Kang S K, Cho M G, Lauro P, Shih D Y. J Mater Res, 2007; 22: 557
[17] Cho M G, Kang S K, Lee H M. J Mater Res, 2008; 23: 1147
[18] Cho M G, Kang S K, Seo S K, Shih D Y, Lee H M. J Mater Res, 2009; 24: 534
[19] Loomans M E, Fine M E. Metall Mater Trans, 2000; 31A: 1155
[20] Baker H, Okamoto H. ASM Handbook. Vol.3. Alloy Phase Diagrams: Section 2. Materials Park, Ohio: ASM International, 1992: 28
[21] Moon K W, Boettinger W J, Kattner U R, Biancaniello F S, Handwerker C A. J Electron Mater, 2000; 29: 1122
[22] Alam M O, Chan Y C, Tu K N. J Appl Phys, 2003; 94: 7904
[23] Callister W D. Materials Science and Engineering–An Introduction. 7th Ed, New York: John Wiley & Sons, 2007: 313
[24] Wang H Q, Gao F, Ma X, Qian Y Y. Scr Mater, 2006; 55: 823

[1] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[2] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[3] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[4] XU Junfeng, ZHANG Baodong, Peter K Galenko. Model of Eutectic Transformation Involving Intermetallic Compound[J]. 金属学报, 2021, 57(10): 1320-1332.
[5] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[6] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[7] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[8] Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG. Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism[J]. 金属学报, 2019, 55(1): 87-100.
[9] Yun LI, Lianjie LIU, Xinming LI, Jinfu LI. Solidification of Undercooled Co75B25 Alloy[J]. 金属学报, 2018, 54(8): 1165-1170.
[10] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
[11] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[12] Jinfu LI, Yaohe ZHOU. Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts[J]. 金属学报, 2018, 54(5): 627-636.
[13] Zengyun JIAN, Tao XU, Junfeng XU, Man ZHU, Fang'e CHANG. Development of Solid-Liquid Interfacial Energyof Melt-Crystal[J]. 金属学报, 2018, 54(5): 766-772.
[14] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[15] Lin GENG, Hao WU, Xiping CUI, Guohua FAN. Recent Progress on the Fabrication of TiAl-Based Composites Sheet by Reaction Annealingof Elemental Foils[J]. 金属学报, 2018, 54(11): 1625-1636.
No Suggested Reading articles found!