Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (3): 272-294    DOI: 10.11900/0412.1961.2021.00464
Overview Current Issue | Archive | Adv Search |
Corrosion-Erosion Mechanism and Research Prospect of Bare Materials and Protective Coatings for Power Generation Boiler
ZHANG Shihong1,2(), HU Kai1,2, LIU Xia1, YANG Yang1
1.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243002, China
2.School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
Cite this article: 

ZHANG Shihong, HU Kai, LIU Xia, YANG Yang. Corrosion-Erosion Mechanism and Research Prospect of Bare Materials and Protective Coatings for Power Generation Boiler. Acta Metall Sin, 2022, 58(3): 272-294.

Download:  HTML  PDF(3020KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Since the “emission peak-carbon neutrality” goal was proposed, coal-fired boilers, which are major power supply equipment and CO2 emission sites, have been gradually developed to zero-carbon emission biomass and low-carbon coal/biomass cofired boiler. The corrosion and erosion behavior of the sulfur and chlorine components of coal and biomass poses a serious threat to the safety and long-term operation of boilers, and protective coatings have become a convenient and efficient way to improve the corrosion and erosion resistance of boilers. This paper reviews recent research progress on high-temperature corrosion and erosion of bare materials and protective coatings used in coal-fired, biomass, and coal/biomass cofired boilers. The mechanism of sulfur corrosion and alkali chlorine corrosion in coal-burning and biomass combustion environments is summarized. The ash deposition-impaction mechanism in coal/biomass cofired environments is described. The current application status of boiler bare materials is introduced, and the design principles, preparation processes, and application status of alloy, ceramic, and metal-ceramic coatings in corrosive and erosive environments are summarized. Based on the current findings, future research on corrosion and erosion of boilers should focus on imperfect hot corrosion mechanisms, accurate corrosion-wear prediction models and types of protective coatings. Finally, material genome engineering and machine learning are proposed to accelerate material research/development and study the corrosion-erosion mechanisms as well as multifactor coupling models. There is a need to integrate powder synthesis methods, coating structure designs, and in-service performance into the development of new protective coatings.

Key words:  sulfur corrosion      chlorine corrosion      erosion-wear      power generation boiler      protective coating     
Received:  28 October 2021     
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(52171058)
About author:  ZHANG Shihong, professor, Tel: 13637101221, E-mail: zsh13637101221@163.com

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00464     OR     https://www.ams.org.cn/EN/Y2022/V58/I3/272

Fig.1  Schematic of the distribution of “boiler pipes” of power generating boiler[57]
MaterialTm / oCRef.
Na2SO4884[63]
K2SO41069[63]
Na2S2O7401[63]
K2S2O7325[63]
Na3Fe(SO4)3624[63]
K3Fe(SO4)3618[63]
Na2SO4-CoSO4575[71]
Na2SO4-NiSO4631[71]
Table 1  Melting points (Tm) of various sulfate/pyrosulfate salts and eutectic salts[63,71]
Fig.2  Schematic of the process of hot corrosion induced by molten sulfate salts[63]
Fig.3  Ash corrosion of tubes in biomass boiler[29]
Fig.4  Schematics of hot corrosion process induced by KCl molten salt
Fig.5  Schematics of ash deposition-impaction mechanism on a heat transfer tube[43]
SteelCCrMoVNbNiOther
20G[96]0.17-0.24------
12CrMoVG[96]0.08-0.150.90-1.200.25-0.350.15-0.30---
T11[98]0.05-0.151.00-1.500.44-0.65----
T23[98]0.04-0.101.90-2.600.05-0.300.20-0.300.02-0.08-W (1.45-1.75)
Improve red-hardness and
heat resistance
T24[62]0.05-0.102.20-2.600.90-1.10--Ti (0.05-0.10)
Refine the grain and reduce
cold shortness
T91[98]0.08-0.128.00-9.500.85-1.050.18-0.250.06-0.10--
T92[97]0.07-0.138.50-9.500.30-0.600.15-0.250.04-0.09-W (1.50-2.00)
TP304[99]≤ 0.0818.00-20.00---8.00-11.00-
TP347[99]≤ 0.1017.00-19.00--0.80-1.509.00-13.00-
Super304H[97]0.07-0.1317.00-19.00--0.30-0.607.50-10.50Cu (2.50-3.50)
Improve strength and
toughness and corrosion
resistance
HR3C[100]≤ 0.1024.00-26.00--0.20-0.6019.00-22.00-
Table 2  Main alloy element chemical compositions and functions of steels for boiler[62,96-100]
AlloySiCrAlTiWMoCoNiFe
Superfer 800H[101]0.6019.500.340.44---30.80Bal.
A 286[102]0.5013.600.251.99-1.180.3224.10Bal.
Inconel 718[103]0.1819.000.300.90-3.05-Bal.18.50
Inconel 600[103]-15.50-----Bal.10.00
Superco 605[103]0.3020.00----Bal.10.003.00
Stellite-6[104]1.0928.27--4.51-Bal.2.802.66
Table 3  Chemical compositions of high temperature alloy for boiler[101-104]
TechnologyFlame propertyCoating property
Temperature / oCVelocity / (m·s-1)Porosity / %Bonding strength / MPa
AS[32]> 600050-10010-2025-50
PS[32]10000-15000300-10005-1020-60
D-gun[113]5500> 2500< 2> 70
HVOF[113]2500-5500500-1200< 2> 70
CS[32]0-700300-1200< 5> 70
Table 4  Comparison of thermal spray technology in the field of boiler protective[32,113]
Fig.6  Relevant thermal spraying technology proportion in the field of boiler protection
CoatingSubstrateCoatingCorrosionCycleMolten saltHot corrosion rate
preparationtemperaturetimecompositionmg·cm-2
processoCh(mass fraction)CoatingSubstrate
Ni-21Cr304 s.s.HVOF650100NaCl + Na2SO4 +35.00-
Ni-15CrKCl + K2SO448.00
Ni-11Cr56.50
Ni-7Cr[114]65.50
FeCrAl[115]T92HVOF7001000

37.5%Na2SO4 +

37.5%K2SO4 +

25%Fe2O3

70-
750130
800170
FeCrNiMoSi[116]T91PS70084Na2SO4-30%K2SO48.0-

Ti-50Al

Al-30Cr[117]

Superfer 800HPS + Nitriding90050Na2SO4-60%V2O58.524.5
12.0
NiCrBSi[118]Inconel 600HVOF90050Na2SO4-60%V2O59.115.3
Inconel 60110.526
Superfer 800H9.246
Ni-CrT91D-gun900100Na2SO4-60%V2O566.373.0
Stellite-21[119]67.2
NiCrAlYSuperfer 800HPS90050Na2SO4-60%V2O55.451.6
Ni-20Cr10.2
Stellite-632.4
Ni3Al[120]16.2
Ni-50Cr[121]T22Cold spray90050Na2SO4-60%V2O548218
SA 51629245
Ni-30Cr20GArc spray750100Na2SO4-30%K2SO44.3-
Ni-45Cr3.2
Ni-50Cr[122]2.9
NiCrCarbon steelHVAF600168KCl11.32-
NiAl[123]2.49
NiCrAlCarbon steelHVAF600168KCl1.49-
NiCrMoSi[105]0.67
Table 5  Comparison of hot corrosion rates for different alloy coatings[105,114-123]
CoatingSubstrateCoatingCorrosionCycleMolten saltHot corrosion rate
timemg·cm-2
preparationTemperaturecomposition
hCoatingSubstrate
processoC(mass fraction)
Al2O3[124]304LPS900168ActualwastePeeling-
energy furnace
Cr2O3[125]T22PS85025Na2SO4-40%V2O550.9365.16
Cr2O3[126]T11D-gun90050Na2SO4-60%V2O524.0025.00
NiCrAlCo-Y2O3 /309 s.s.PS60016810.2%KCl +--
ZrO2-8Y2O3[127]11.5%Na2CO3 +
72.9%Na2SO4 +
4.4%K2SO4
NiCr/Cr2O3-50Al2O3[128]T22D-gun90050Na2SO4-60%V2O510.50364.17
Superfer 800H21.5526.58
NiCr/Al2O3-40TiO2[129]Inconel 625PS80050K2SO4-60%NaCl7.0015.50
NiCr/Al2O3T11PS9001000Actual coal boiler113.27135.96
NiCr/Al2O3-4CNT[130]11.27135.96
ZrO2-Y2O3-6CNT[131]T91PS75050Na2SO4-60%V2O53.5470.12
Table 6  Comparison of hot corrosion rates for different ceramic coatings[124-131]
CoatingSubstrateCoatingCorrosionCycleMolten saltHot corrosion
timerate / (mg·cm-2)
preparationtemperaturecomposition
processoCh(mass fraction)CoatingSubstrate
Cr3C2-25NiCrSuperni 600D-gun900100Na2SO4-25%NaCl5.0-
Cr3C2-25NiCr-0.4%CeO2[132]7.0
Cr3C2-NiCr-Zr[133]Superni 600D-gun90010040%Na2SO4-7.0-
Superni 71810%NaCl-40%K2SO4-3.5
Superco 60510%KCl11.7
Cr3C2-25NiCr/WC-Co[134]T22HVOF70050Na2SO4-82%Fe2(SO4)38.877.8
Ni-20Cr-TiCT22Cold spray90050Na2SO4-60%V2O540220
Ni-20Cr-TiC-Re[135]20
FeCrNiAlMnB-Cr3C2 [136]AISI 1020Arc spray750100Na2SO4 + 25%K2SO43.5127.1
Na2SO4 + 25%NaCl11.1130.1
Cr3C2-NiCr[137]T91HVOF +90050Na2SO4-60%V2O5236-
sealing + heat25
treatment68
NiCrBSi-TiB2[138]Carbon steelHVOF800200Na2SO4-60%V2O57-
Table 7  Comparison of hot corrosion rates for different metallic-ceramic coatings[132-138]
Fig.7  Schematics of preparation process of NiCrBSi-ZrB2 powder and coating
Fig.8  Hot corrosion and high temperature wear performances of NiCrBSi-ZrB2 coating
CoatingSubstrateCoatingTestCycleErodentImpactThickness loss (mm) /
timeangleVolume loss (mm3) /
preparationtemperaturematerial
min(o)Weight loss (mg) /
processoC
Erosion wear rate
CoatingSubstrate
NiCrBSi-Al2O3[146]304 s.s.PS45010Al2O3303.4 × 10-58.5 × 10-5
Cr2C3-NiCrCarbon steelHVAFRoom10Al2O3300.69 mm3-
Cr2C3-FeCrtemperature0.68 mm3-
Cr2C3-WC-MA[147]0.52 mm3-
NiCrAlY[148]Superni 75PS54060000Actual coal-

0.46 mm

0.46 mm

0.40 mm

0.49 mm

-
Superni 600fired boiler--
Superni 718--
Superfer 800--
Cr2C3-25NiCr304 s.s.HVOF40060Al2O33039 mg-
WC-10Co4Cr[149]51 mg
WC-CoT12D-gun4005Al2O3302.5 × 10-55.0 × 10-5
Stellite 62.5 × 10-5
Stellite 21[150]2.4 × 10-5
Ni-20CrSA 516Cold spray70090000Actual coal-0.21 mm0.50 mm
Ni-20Cr-TiCfired boiler0.12 mm
Ni-20Cr-TiC-Re[151]0.11 mm
Ni-20CrT22Arc spray75090000Actual coal-0.06 mm0.51 mm
Ni-5Al[152]fired boiler0.16 mm
Al2O3-3TiO2[153]T11D-gun70090000Actual coal-0.25 mm2.08 mm
T22fired boiler0.23 mm1.71 mm
Table 8  Comparison of erosion wear rates for different thermal spray coatings[146-153]
1 Tong D, Zhang Q, Zheng Y X, et al. Committed emissions from existing energy infrastructure jeopardize 1.5oC climate target [J]. Nature, 2019, 572: 373
2 Maurya P K, Mondal S, Kumar V, et al. Roadmap to sustainable carbon-neutral energy and environment: Can we cross the barrier of biomass productivity? [J]. Environ. Sci. Pollut. Res., 2021, 28: 49327
3 Liu Z, Ciais P, Deng Z, et al. Carbon monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production [J]. Sci. Data, 2020, 7: 392
4 Tong D, Zhang Q, Davis S J, et al. Targeted emission reductions from global super-polluting power plant units [J]. Nat. Sustain., 2018, 1: 59
5 Pfeiffer A, Hepburn C, Vogt-Schilb A, et al. Committed emissions from existing and planned power plants and asset stranding required to meet the Paris Agreement [J]. Environ. Res. Lett., 2018, 13: 054019
6 Edenhofer O, Steckel J C, Jakob M, et al. Reports of coal's terminal decline may be exaggerated [J]. Environ. Res. Lett., 2018, 13: 024019
7 Davis S J, Caldeira K, Matthews H D. Future CO2 emissions and climate change from existing energy infrastructure [J]. Science, 2010, 329: 1330
8 The United Nations. Paris Agreement [EB/OL]. The 21st United Nations Climate Change Conference, Paris, 2015.
9 Ministry of Ecology and Environment of the People's Republic of China. China's policy and action on handling climate change 2020 annual report [EB/OL]. (2021-07-13).
中华人民共和国生态环境部. 中国应对气候变化的政策与行动2020年度报告 [EB/OL]. (2021-07-13).
10 Global Energy Interconnection Development and Cooperation Organization. Research on China's “14th five-year plan” for electric power development [R]. Beijing: Global Energy Interconnection Development and Cooperation Organization, 2020
全球能源互联网发展合作组织. 中国“十四五”电力发展规划研究 [R]. 北京: 全球能源互联网发展合作组织, 2020
11 The Comprehensive Research Group for Energy Consulting and Research. Strategic research on promoting energy revolution of production and consumption [J]. Strat Study CAE, 2015, 17(9): 11
“能源领域咨询研究”综合组. 推动能源生产和消费革命战略研究 [J]. 中国工程科学, 2015, 17(9): 11
12 Zhao X G, Li A. A multi-objective sustainable location model for biomass power plants: Case of China [J]. Energy, 2016, 112: 1184
13 Tan Q L, Wang T R, Zhang Y M, et al. Nonlinear multi-objective optimization model for a biomass direct-fired power generation supply chain using a case study in China [J]. Energy, 2017, 139: 1066
14 Yi Q, Zhao Y J, Huang Y, et al. Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom [J]. Appl. Energy, 2018, 225: 258
15 Goerndt M E, Aguilar F X, Skog K. Drivers of biomass co-firing in U.S. coal-fired power plants [J]. Biomass Bioenergy, 2013, 58: 158
16 Wu C Z, Zhou Z Q, Ma L L, et al. Comparative study on biomass power generation technologies [J]. Renew. Energy Resour., 2008, 26(3): 34
吴创之, 周肇秋, 马隆龙等. 生物质发电技术分析比较 [J]. 可再生能源, 2008, 26(3): 34
17 Roni M S, Chowdhury S, Mamun S, et al. Biomass co-firing technology with policies, challenges, and opportunities: A global review [J]. Renew. Sust. Energy Rev., 2017, 78: 1089
18 Mun T Y, Tumsa T Z, Lee U, et al. Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant [J]. Energy, 2016, 115: 954
19 Cebrucean D, Cebrucean V, Ionel I. Modeling and performance analysis of subcritical and supercritical coal-fired power plants with biomass co-firing and CO2 capture [J]. Clean Technol. Environ. Policy, 2020, 22: 153
20 Fogarasi S, Cormos C C. Technico-economic assessment of coal and sawdust co-firing power generation with CO2 capture [J]. J. Clean. Prod., 2015, 103: 140
21 National Energy Administration. The “13th Five-Year Plan” for biomass energy development [EB/OL]. (2016-12-06).
国家能源局. 国家能源局关于印发《生物质能发展“十三五”规划》的通知 [EB/OL]. (2016-12-06).
22 Zhang S X, Shi L, Xu Y F, et al. Application of power generation by coupling direct-combustion of biomass, solid waste and coal [J]. Power Syst. Eng., 2021, 37(4): 12
张世鑫, 史 磊, 许燕飞等. 煤和生物质、固废直燃耦合发电技术应用 [J]. 电站系统工程, 2021, 37(4): 12
23 Yang W L, Ni Y, Cao S. Progress of biomass direct co-firing for coal-fired boilers [J]. Renew. Energy Resour., 2021, 39: 1007
杨卧龙, 倪 煜, 曹 泷. 生物质直接混烧技术在燃煤电站的应用研究进展 [J]. 可再生能源, 2021, 39: 1007
24 Agbor E, Oyedun A O, Zhang X L, et al. Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas [J]. Appl. Energy, 2016, 169: 433
25 Zhang D W, Fan H D, Zhao B, et al. Development of biomass power generation technology at home and abroad [J]. Huadian Technol., 2021, 43(3): 70
张东旺, 范浩东, 赵 冰等. 国内外生物质能源发电技术应用进展 [J]. 华电技术, 2021, 43(3): 70
26 Ma H D, Wang Y G, Zhao Q X, et al. Characteristics of ash deposit and dew point corrosion in biofuel boiler [J]. CIESC J., 2016, 67: 5237
马海东, 王云刚, 赵钦新等. 生物质锅炉积灰特性与露点腐蚀 [J]. 化工学报, 2016, 67: 5237
27 Deng J X, Ding Z L, Zhou H M, et al. Performance and wear characteristics of ceramic, cemented carbide, and metal nozzles used in coal-water-slurry boilers [J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 919
28 Nagarajan R, Ambedkar B, Gowrisankar S, et al. Development of predictive model for fly-ash erosion phenomena in coal-burning boilers [J]. Wear, 2009, 267: 122
29 Niu Y Q, Tan H Z, Hui S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures [J]. Prog. Energy Combust. Sci., 2016, 52: 1
30 Chen H, Pan P Y, Zhao Q X, et al. Coupling mechanism of viscose ash deposition and dewpoint corrosion in industrial coal-fired boiler [J]. CIESC J., 2017, 68: 4774
陈 衡, 潘佩媛, 赵钦新等. 燃煤工业锅炉黏性积灰和露点腐蚀耦合机理 [J]. 化工学报, 2017, 68: 4774
31 Xiong X H, Lv Z M, Tan H Z, et al. A typical super-heater tube leakage and high temperature corrosion mechanism investigation in a 260 t/h circulated fluidized boiler [J]. Eng. Fail. Anal., 2020, 109: 104255
32 Zhang X J, Liu H, Chen T Z, et al. Application of coatings to alleviate fireside corrosion on heat transfer tubes during the combustion of low-grade solid fuels: A review [J]. Energy Fuels, 2020, 34: 11752
33 Hu S H, Ni Y G, Yin Q, et al. Research on element migration and ash deposition characteristics of high-alkali coal in horizontal liquid slagging cyclone furnace [J]. Fuel, 2022, 308: 121962
34 Feng Y L, Wei Q, Li H, et al. Summarization of the research on high-temperature erosion test method and mechanisms [J]. Boiler Technol., 2008, 39(4): 62
冯艳玲, 魏 琪, 李 辉等. 高温冲蚀磨损测试方法及机理的研究概述 [J]. 锅炉技术, 2008, 39(4): 62
35 Vicenzi J, Villanova D L, Lima M D, et al. HVOF-coatings against high temperature erosion (~300oC) by coal fly ash in thermoelectric power plant [J]. Mater. Des., 2006, 27: 236
36 Pérez M G, Vakkilainen E, Hyppänen T. Unsteady CFD analysis of Kraft recovery boiler fly-ash trajectories, sticking efficiencies and deposition rates with a mechanistic particle rebound-stick model [J]. Fuel, 2016, 181: 408
37 Dizaji H B, Zeng T, Hölzig H, et al. Ash transformation mechanism during combustion of rice husk and rice straw [J]. Fuel, 2022, 307: 121768
38 Pyykönen J, Jokiniemi J. Modelling alkali chloride superheater deposition and its implications [J]. Fuel Process. Technol., 2003, 80: 225
39 Maj I, Kalisz S, Szymajda A, et al. The influence of cow dung and mixed straw ashes on steel corrosion [J]. Renew Energy, 2021, 177: 1198
40 Liu G Q, Li S Q, Yao Q. A JKR-based dynamic model for the impact of micro-particle with a flat surface [J]. Powder Technol., 2011, 207: 215
41 Konstandopoulos A G. Deposit growth dynamics: Particle sticking and scattering phenomena [J]. Powder Technol., 2000, 109: 262
42 Forstner M, Hofmeister G, Jöller M, et al. CFD simulation of ash deposit formation in fixed bed biomass furnaces and boilers [J]. Prog. Comput. Fluid Dynam., 2006, 6: 248
43 Cai Y T, Tay K, Zheng Z M, et al. Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review [J]. Appl. Energy, 2018, 230: 1447
44 Doshi V, Vuthaluru H B, Korbee R, et al. Development of a modeling approach to predict ash formation during co-firing of coal and biomass [J]. Fuel Process. Technol., 2009, 90: 1148
45 Mahajan S, Chhibber R. Hot corrosion studies of boiler steels exposed to different molten salt mixtures at 950oC [J]. Eng. Fail. Anal., 2019, 99: 210
46 Meißner T M, Grégoire B, Montero X, et al. Long-term corrosion behavior of Cr diffusion coatings on ferritic-martensitic superheater tube material X20CrMoV12-1 under conditions mimicking biomass (co-)firing [J]. Energy Fuels, 2020, 34: 10989
47 Montero X, Ishida A, Rudolphi M, et al. Breakaway corrosion of austenitic steel induced by fireside corrosion [J]. Corros. Sci., 2020, 173: 108765
48 Cao C, Jiang C Y, Lu J T, et al. Corrosion behavior of austenitic stainless steel with different Cr contents in 700oC coal ash/high sulfur flue-gas environment [J]. Acta Metall. Sin., 2022, 58: 67
曹 超, 蒋成洋, 鲁金涛等. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为 [J]. 金属学报, 2022, 58: 67
49 Hagman H, Boström D, Lundberg M, et al. Alloy degradation in a co-firing biomass CFB vortex finder application at 880oC [J]. Corros. Sci., 2019, 150: 136
50 Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630~700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
刘正东, 陈正宗, 何西扣等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
51 Gao B, Wang L, Song X, et al. Effect of pre-oxidation on high temperature oxidation and corrosion behavior of Co-Al-W-based superalloy [J]. Acta Metall. Sin., 2019, 55: 1273
高 博, 王 磊, 宋 秀等. 预氧化对Co-Al-W基高温合金高温氧化和热腐蚀行为的影响 [J]. 金属学报, 2019, 55: 1273
52 Mudgal D, Verma P K, Singh S, et al. High temperature degradation of Co based superalloy in incinerator environment [J]. Adv. Mater. Res., 2012, 585: 542
53 Lu J T, Huang J Y, Yang Z, et al. Simulated fireside corrosion behavior of a wrought Ni-Fe-based superalloy for 700oC-class ultra-supercritical power plant applications [J]. J. Mater. Eng. Perform., 2019, 28: 7390
54 Zhou H X, Wang J W, Meng X H, et al. The corrosion mechanism of Fe-based superalloy in molten NaCl-52wt-%MgCl2 at 520oC [J]. Corros. Eng. Sci. Technol., 2017, 52: 261
55 Cheng H S, Liu G, Lei G, et al. Research progress of high temperature corrosion protection coating technology for coal-burning boiler heating surface [J]. Mater. Rep., 2020, 34(): 433
程海松, 刘 岗, 雷 刚等. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展 [J]. 材料导报, 2020, 34(): 433
56 Singh J, Vasudev H, Singh S. Performance of different coating materials against high temperature oxidation in boiler tubes—A review [J]. Mater. Today Proc., 2020, 26: 972
57 Szymański K, Hernas A, Moskal G, et al. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers—A review [J]. Surf. Coat. Technol., 2015, 268: 153
58 Kumar S, Handa A, Chawla V, et al. Performance of thermal-sprayed coatings to combat hot corrosion of coal-fired boiler tube and effect of process parameters and post-coating heat treatment on coating performance: A review [J]. Surf. Eng., 2021, 37: 833
59 Li H, Liu D, Yao D Y. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality [J]. Proc. CSEE, 2021, 41: 6245
李 晖, 刘 栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判 [J]. 中国电机工程学报, 2021, 41: 6245
60 Long H, Huang J J. Development direction analysis of coal-fired power units' design technology during the 13th Five-Year Plan [J]. Power Generat. Technol., 2018, 39: 13
龙 辉, 黄晶晶. “十三五”燃煤发电设计技术发展方向分析 [J]. 发电技术, 2018, 39: 13
61 Lu J T, Gu Y F, Yang Z. Coal ash induced corrosion of three candidate materials for superheater boiler tubes of advanced ultra-supercritical power station [J]. Corros. Sci. Protect. Technol., 2014, 26: 205
鲁金涛, 谷月峰, 杨 珍. 3种700℃级超超临界燃煤锅炉备选高温合金煤灰腐蚀行为 [J]. 腐蚀科学与防护技术, 2014, 26: 205
62 Li J, Zhou R C, Tang L Y, et al. Research on high temperature fireside corrosion of water wall materials for ultra-supercritical coal fired boiler [J]. Hot Working Technol., 2017, 46(16): 19
李 江, 周荣灿, 唐丽英等. 超超临界燃煤锅炉水冷壁材料高温烟气腐蚀研究 [J]. 热加工工艺, 2017, 46(16): 19
63 Hu S S, Finklea H, Liu X B. A review on molten sulfate salts induced hot corrosion [J]. J. Mater. Sci. Technol., 2021, 90: 243
64 Mannava V, Rao A S, Paulose N, et al. Hot corrosion studies on Ni-base superalloy at 650oC under marine-like environment conditions using three salt mixture (Na2SO4 + NaCl + NaVO3) [J]. Corros. Sci., 2016, 105: 109
65 Yan W P, Ma K, Gao Z Y, et al. Erosion of economizer tube bundles in pressurized oxy-fuel coal-fired boiler [J]. J. Xi'an Jiaotong Univ., 2013, 47(3): 53
阎维平, 马 凯, 高正阳等. 增压富氧燃煤锅炉省煤器管束磨损研究 [J]. 西安交通大学学报, 2013, 47(3): 53
66 Young D J. High Temperature Oxidation and Corrosion of Metals [M]. Oxford: Elsevier Science, 2008: 361
67 Liang Z Y, Yu M, Zhao Q X. Investigation of fireside corrosion of austenitic heat-resistant steel 10Cr18Ni9Cu3NbN in ultra-supercritical power plants [J]. Eng. Fail. Anal., 2019, 100: 180
68 Syed A U, Simms N J, Oakey J E. Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass [J]. Fuel, 2012, 101: 62
69 Singh G, Bala N, Chawla V, et al. Hot corrosion behavior of HVOF-sprayed carbide based composite coatings for boiler steel in Na2SO4-60%V2O5 environment at 900oC under cyclic conditions [J]. Corros. Sci., 2021, 190: 109666
70 Meier G H. Invited review paper in commemoration of over 50 years of oxidation of metals: Current aspects of deposit-induced corrosion [J]. Oxid. Met., 2021, doi: 10.1007/s11085-020-10015-6
71 Lortrakul P, Trice R W, Trumble K P, et al. Investigation of the mechanisms of Type-II hot corrosion of superalloy CMSX-4 [J]. Corros. Sci., 2014, 80: 408
72 Zhong Y S, Rapp R A. Solubilities of α-Fe2O3 and Fe3O4 in fused Na2SO4 at 1200 K [J]. J. Electrochem. Soc., 1985, 132: 2498
73 Gupta D K, Rapp R A. The solubilities of NiO, Co3O4, and ternary oxides in fused Na2SO4 at 1200 K [J]. J. Electrochem. Soc., 1980, 127: 2194
74 Jose P D, Gupta D K, Rapp R A. Solubility of α-Al2O3 in fused Na2SO4 at 1200 K [J]. J. Electrochem. Soc., 1985, 132: 735
75 Zhang Y S. Solubilities of Cr2O3 in fused Na2SO4 at 1200 K [J]. J. Electrochem. Soc., 1986, 133: 655
76 Rapp R A. Hot corrosion of materials: A fluxing mechanism? [J]. Corros. Sci., 2002, 44: 209
77 Kolta G A, Hewaidy I F, Felix N S. Reactions between sodium sulphate and vanadium pentoxide [J]. Thermochim. Acta, 1972, 4: 151
78 Montero X, Galetz M C. Sulfate-vanadate-induced corrosion of different alloys [J]. Oxid. Met., 2018, 89: 499
79 Zhao Y Y, Chen D L, Chen J, et al. A mathematic model of the whole erosions in coal-fired boilers [J]. Boiler Manuf., 2002, (2): 6
赵渝渝, 陈冬林, 陈 荐等. 燃煤锅炉总体磨损性数学模型 [J]. 锅炉制造, 2002, (2): 6
80 Wright I G, Williams D N, Hazard H R, et al. Fireside corrosion and fly ash erosion in boilers: Final report [R]. Palo Alto, CA: Electric Power Research Institute, 1987
81 Jin T, Luo K, Fan J R, et al. Immersed boundary method for simulations of erosion on staggered tube bank by coal ash particles [J]. Powder Technol., 2012, 225: 196
82 Orumbayev R K, Bakhtiyar B T, Umyshev D R, et al. Experimental study of ash wear of heat exchange surfaces of the boiler [J]. Energy, 2021, 215: 119119
83 Singh P K, Mishra S B. Erosion behaviour of boiler component materials at room temperature and 400oC temperature [J]. Mater. Res. Express, 2020, 7: 016538
84 Sagayaraj T A D, Suresh S, Chandrasekar M. Experimental studies on the erosion rate of different heat treated carbon steel economiser tubes of power boilers by fly ash particles [J]. Int. J. Min. Metall. Mater., 2009, 16: 534
85 Yun J Y, Lee H S, Hur D H, et al. Effect of oxidation film on the fretting wear behavior of Alloy 690 steam generator tube mated with SUS 409 [J]. Wear, 2016, 368-369: 344
86 Xing X F, Wang R, Bauer N, et al. Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China [J]. Nat. Commun., 2021, 12: 3159
87 Gruber T, Schulze K, Scharler R, et al. Investigation of the corrosion behaviour of 13CrMo4-5 for biomass fired boilers with coupled online corrosion and deposit probe measurements [J]. Fuel, 2015, 144: 15
88 Zhou J, Liu Q, Zhong W Q, et al. Migration and transformation law of potassium in the combustion of biomass blended coal [J]. J. Fuel Chem. Technol., 2020, 48: 929
周 骏, 刘 倩, 钟文琪等. 生物质混煤燃烧过程中钾的迁移转化规律 [J]. 燃料化学学报, 2020, 48: 929
89 Chen J, Fu P F, Zhang B, et al. Deposition and sintering behavior of alkali metals and chlorine in biomass combustion [J]. J. Eng. Thermophys., 2014, 35: 1453
陈 兢, 傅培舫, 张 斌等. 生物质燃烧中碱金属和氯沉积烧结行为分析 [J]. 工程热物理学报, 2014, 35: 1453
90 Lehmusto J, Yrjas P, Skrifvars B J, et al. Detailed studies on the high temperature corrosion reactions between potassium chloride and metallic chromium [J]. Mater. Sci. Forum, 2011, 696: 218
91 Uusitalo M A, Vuoristo P M J, Mäntylä T A. High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits [J]. Corros. Sci., 2004, 46: 1311
92 Sadeghimeresht E, Reddy L, Hussain T, et al. Influence of KCl and HCl on high temperature corrosion of HVAF-sprayed NiCrAlY and NiCrMo coatings [J]. Mater. Des., 2018, 148: 17
93 Wang Y B, Tan H Z. Condensation of KCl(g) under varied temperature gradient [J]. Fuel, 2019, 237: 1141
94 Lyu Z K, Long S W, Li G B, et al. Density functional theory study on chlorine corrosion of biomass furnace [J]. CIESC J., 2019, 70: 4370
吕泽康, 龙慎伟, 李冠兵等. 生物质锅炉氯腐蚀的密度泛函理论研究 [J]. 化工学报, 2019, 70: 4370
95 Gao J K, Tong Y, Wang S C, et al. The current situation and future development tendency of biomass-coal coupling power generation system [J]. Renew. Energy Resour., 2019, 37: 501
高金锴, 佟 瑶, 王树才等. 生物质燃煤耦合发电技术应用现状及未来趋势 [J]. 可再生能源, 2019, 37: 501
96 Jin Q M, Dai G F, Wang Y B, et al. High-temperature corrosion of water-wall tubes in oxy-combustion atmosphere [J]. J. Energy Inst., 2020, 93: 1305
97 Zhang Q, Wang J Q, Chen G H, et al. Microstructures and mechanical properties of T92/Super304H dissimilar steel weld joints [J]. Chin. J. Nonferrous Met., 2013, 23: 396
张 祺, 王家庆, 陈国宏等. T92/Super304H异种钢焊接接头的组织结构和力学性能 [J]. 中国有色金属学报, 2013, 23: 396
98 Zhao Q X, Zhang Z X, Cheng D N, et al. High temperature corrosion of water wall materials T23 and T24 in simulated furnace atmospheres [J]. Chin. J. Chem. Eng., 2012, 20: 814
99 Wright I G, Dooley R B. Morphologies of oxide growth and exfoliation in superheater and reheater tubing of steam boiler [J]. Mater. High Temp., 2011, 28: 40
100 Hussain T, Syed A U, Simms N J. Trends in fireside corrosion damage to superheaters in air and oxy-firing of coal/biomass [J]. Fuel, 2013, 113: 787
101 Goyal G, Singh H, Prakash S. Effect of superficially applied ZrO2 inhibitor on the high temperature corrosion performance of some Fe-, Co- and Ni-base superalloys [J]. Appl. Surf. Sci., 2008, 254: 6653
102 Muthu S M, Arivarasu M. Investigations of hot corrosion resistance of HVOF coated Fe based superalloy A-286 in simulated gas turbine environment [J]. Eng. Fail. Anal., 2020, 107: 104224
103 Mudgal D, Singh S, Prakash S. Hot corrosion behavior of some superalloys in a simulated incinerator environment at 900oC [J]. J. Mater. Eng. Perform., 2014, 23: 238
104 Birol Y. High temperature sliding wear behaviour of Inconel 617 and Stellite 6 alloys [J]. Wear, 2010, 269: 664
105 Guo J T. The current situation of application and development of superalloys in the fields of energy industry [J]. Acta Metall. Sin., 2010, 46: 513
郭建亭. 高温合金在能源工业领域中的应用现状与发展 [J]. 金属学报, 2010, 46: 513
106 Israelsson N, Unocic K A, Hellström K, et al. A microstructural and kinetic investigation of the KCl-induced corrosion of an FeCrAl alloy at 600oC [J]. Oxid. Met., 2015, 84: 105
107 Okoro S C, Montgomery M, Frandsen F J, et al. Influence of preoxidation on high temperature corrosion of a Ni-based alloy under conditions relevant to biomass firing [J]. Surf. Coat. Technol., 2017, 319: 76
108 Klein L, Killian M S, Virtanen S. The effect of nickel and silicon addition on some oxidation properties of novel Co-based high temperature alloys [J]. Corros. Sci., 2013, 69: 43
109 Weng F, Yu H J, Wan K, et al. The influence of Nb on hot corrosion behavior of Ni-based superalloy at 800oC in a mixture of Na2SO4-NaCl [J]. J. Mater. Res., 2014, 29: 2596
110 Schütze M, Malessa M, Rohr V, et al. Development of coatings for protection in specific high temperature environments [J]. Surf. Coat. Technol., 2006, 201: 3872
111 Trindade V, Christ H J, Krupp U. Grain-size effects on the high-temperature oxidation behaviour of chromium steels [J]. Oxid. Met., 2010, 73: 551
112 Sadeghimeresht E, Markocsan N, Huhtakangas M, et al. Isothermal oxidation of HVAF-sprayed Ni-based chromia, alumina and mixed-oxide scale forming coatings in ambient air [J]. Surf. Coat. Technol., 2017, 316: 10
113 Davis J R. Handbook of Thermal Spray Technology [M]. Materials Park, OH: ASM International, 2004: 54
114 Wang G Y, Liu H, Chen T Z, et al. Comparative investigation on thermal corrosion of alloy coatings in simulated waste incinerator environment [J]. Corros. Sci., 2021, 189: 109592
115 Hussain T, Simms N J, Nicholls J R, et al. Fireside corrosion degradation of HVOF thermal sprayed FeCrAl coating at 700-800oC [J]. Surf. Coat. Technol., 2015, 268: 165
116 Jiang C P, Liu W Q, Wang G, et al. The corrosion behaviours of plasma-sprayed Fe-based amorphous coatings [J]. Surf. Eng., 2018, 34: 634
117 Chawla V, Sidhu B S, Rani A, et al. High-temperature corrosion behavior of some post-plasma-spraying-gas-nitrided metallic coatings on a Fe-based superalloy [J]. Mater. Corros., 2019, 70: 2157
118 Sidhu T S, Prakash S, Agrawal R D. Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni- and Fe-based superalloys in Na2SO4-60%V2O5 environment at 900oC [J]. Acta Mater., 2006, 54: 773
119 Mittal R, Singh M, Kumar P. Characterization of detonation gun thermal spray coatings on SA213T91 in simulated boiler environment [J]. Mater. Today Proc., 2019, 18: 4952
120 Singh H, Puri D, Prakash S. Some studies on hot corrosion performance of plasma sprayed coatings on a Fe-based superalloy [J]. Surf. Coat. Technol., 2005, 192: 27
121 Bala N, Singh H, Prakash S. Accelerated hot corrosion studies of cold spray Ni-50Cr coating on boiler steels [J]. Mater. Des., 2010, 31: 244
122 Cheng J, Wu Y P, Chen L Y, et al. Hot corrosion behavior and mechanism of high-velocity arc-sprayed Ni-Cr alloy coatings [J]. J. Therm. Spray Technol., 2019, 28: 1263
123 Sadeghimeresht E, Reddy L, Hussain T, et al. Chlorine-induced high temperature corrosion of HVAF-sprayed Ni-based alumina and chromia forming coatings [J]. Corros. Sci., 2018, 132: 170
124 Goutier F, Valette S, Vardelle A, et al. Behaviour of alumina-coated 304L steel in a waste-to-energy plant [J]. Surf. Coat. Technol., 2011, 205: 4425
125 Singh G, Goyal K, Bhatia R. Hot corrosion studies of plasma-sprayed chromium oxide coatings on boiler tube steel at 850oC in simulated boiler environment [J]. Iran. J. Sci. Technol. Trans. Mech. Eng., 2018, 42: 149
126 Mittal R, Singh H. Evaluation of the behavior of D-gun sprayed coatings on T-11 boiler steel at 900oC temperature [J]. Mater. Today Proc., 2020, 26: 549
127 Rao S, Frederick L, McDonald A. Resistance of nanostructured environmental barrier coatings to the movement of molten salts [J]. J. Therm. Spray Technol., 2012, 21: 887
128 Rani A, Bala N, Gupta C M. Accelerated hot corrosion studies of D-gun-sprayed Cr2O3-50% Al2O3 coating on boiler steel and Fe-based superalloy [J]. Oxid. Met., 2017, 88: 621
129 Katiki K, Yadlapati S, Chidepudi N S, et al. Performance of plasma spray coatings on Inconel 625 in air oxidation and molten salt environment at 800oC [J]. Int. J. Chem. Tech. Res., 2014, 6: 2744
130 Goyal R, Sidhu B S, Chawla V. Hot corrosion performance of plasma-sprayed multiwalled carbon nanotube-Al2O3 composite coatings in a coal-fired boiler at 900oC [J]. J. Mater. Eng. Perform., 2020, 29: 5738
131 Kumar S, Bhatia R, Singh H. Hot corrosion behaviour of CNT-reinforced zirconium yttrium composite coating at elevated temperature [J]. Mater. Today Proc., 2020, 28: 1530
132 Mudgal D, Kumar S, Singh S, et al. Corrosion behavior of bare, Cr3C2-25%(NiCr), and Cr3C2-25%(NiCr) + 0.4%CeO2-coated Superni 600 under molten salt at 900oC [J]. J. Mater. Eng. Perform., 2014, 23: 3805
133 Ahuja L, Mudgal D, Singh S, et al. A comparative study to evaluate the corrosion performance of Zr incorporated Cr3C2-(NiCr) coating at 900oC [J]. Ceram. Int., 2018, 44: 6479
134 Singh H, Kaur M, Prakash S. High-temperature exposure studies of HVOF-sprayed Cr3C2-25(NiCr)/(WC-Co) coating [J]. J. Therm. Spray Technol., 2016, 25: 1192
135 Singh H, Bala N, Kaur N, et al. Effect of additions of TiC and Re on high temperature corrosion performance of cold sprayed Ni-20Cr coatings [J]. Surf. Coat. Technol., 2015, 280: 50
136 Cheng J, Wu Y P, Shen W, et al. A study on hot corrosion performance of high velocity arc-sprayed FeCrNiAlMnB/Cr3C2 coating exposed to Na2SO4 + K2SO4 and Na2SO4 + NaCl [J]. Surf. Coat. Technol., 2020, 397: 126015
137 Chatha S S, Sidhu H S, Sidhu B S. The effects of post-treatment on the hot corrosion behavior of the HVOF-sprayed Cr3C2-NiCr coating [J]. Surf. Coat. Technol., 2012, 206: 4212
138 Wu Y S. Hot corrosion behavior of nanocrystalline NiCrBSi-TiB2 coating in Na2SO4-60%V2O5 molten salt [J]. Hot Work. Technol., 2015, 44(18): 123
吴姚莎. 纳米NiCrBSi-TiB2涂层在Na2SO4-60%V2O5熔盐中的热腐蚀行为 [J]. 热加工工艺, 2015, 44(18): 123
139 Sundaresan C, Rajasekaran B, Varalakshmi S, et al. Comparative hot corrosion performance of APS and detonation sprayed CoCrAlY, NiCoCrAlY and NiCr coatings on T91 boiler steel [J]. Corros. Sci., 2021, 189: 109556
140 Hu K, Liu X, Zhang S H, et al. Effect of oxygen-fuel ratio on microstructure and hot corrosion behavior of NiCrAlY coatings in KCl molten salt [J]. Chin. J. Nonferrous Met., 2021, 31: 1545
胡 凯, 刘 侠, 张世宏等. 氧燃比对NiCrAlY涂层的微观结构及其在KCl熔盐中热腐蚀行为的影响 [J]. 中国有色金属学报, 2021, 31: 1545
141 Zhang S T, Du K P, Ren X J, et al. Effect of Si on hot corrosion resistance of CoCrAlY coating [J]. Rare Met. Mater. Eng., 2017, 46: 2807
142 Horlock A J, McCartney D G, Shipway P H, et al. Thermally sprayed Ni(Cr)-TiB2 coatings using powder produced by self-propagating high temperature synthesis: Microstructure and abrasive wear behaviour [J]. Mater. Sci. Eng., 2002, A336: 88
143 Cai J, Gao C Z, Lv P, et al. Hot corrosion behaviour of thermally sprayed CoCrAlY coating irradiated by high-current pulsed electron beam [J]. J. Alloys Compd., 2019, 784: 1221
144 Zhu S Y, Cheng J, Qiao Z H, et al. High temperature solid-lubricating materials: A review [J]. Tribol. Int., 2019, 133: 206
145 Meng Y G, Xu J, Jin Z M, et al. A review of recent advances in tribology [J]. Friction, 2020, 8: 221
146 Praveen A S, Sarangan J, Suresh S, et al. Erosion wear behaviour of plasma sprayed NiCrSiB/Al2O3 composite coating [J]. Int. J. Refract. Met. Hard Mater., 2015, 52: 209
147 Baiamonte L, Björklund S, Mulone A, et al. Carbide-laden coatings deposited using a hand-held high-velocity air-fuel (HVAF) spray gun [J]. Surf. Coat. Technol., 2021, 406: 126725
148 Mishra S B, Chandra K, Prakash S. Erosion-corrosion performance of NiCrAlY coating produced by plasma spray process in a coal-fired thermal power plant [J]. Surf. Coat. Technol., 2013, 216: 23
149 Kumar P, Sidhu B S. Characterization and high-temperature erosion behaviour of HVOF thermal spray cermet coatings [J]. J. Mater. Eng. Perform., 2016, 25: 250
150 Singh P K, Mishra S B. Studies on solid particle erosion behaviour of D-gun sprayed WC-Co, Stellite 6 and Stellite 21 coatings on SAE213-T12 boiler steel at 400oC temperature [J]. Surf. Coat. Technol., 2020, 385: 125353
151 Bala N, Singh H, Prakash S. Performance of cold sprayed Ni based coatings in actual boiler environment [J]. Surf. Coat. Technol., 2017, 318: 50
152 Kumar S, Kumar M, Handa A. Erosion corrosion behaviour and mechanical properties of wire arc sprayed Ni-Cr and Ni-Al coating on boiler steels in a real boiler environment [J]. Mater. High Temp., 2020, 37: 370
153 Sapra P K, Singh P K, Prakash S, et al. Performance of Al2O3-3%TiO2 detonation gun coated ferritic steels in coal fired boiler [J]. Int. J. Surf. Sci. Eng., 2009, 3: 145
154 Sidhu H S, Sidhu B S, Prakash S. Mechanical and microstructural properties of HVOF sprayed WC-Co and Cr3C2-NiCr coatings on the boiler tube steels using LPG as the fuel gas [J]. J. Mater. Process. Technol., 2006, 171: 77
155 Wu Y S, Zeng D C, Liu Z W, et al. Microstructure and sliding wear behavior of nanostructured Ni60-TiB2 composite coating sprayed by HVOF technique [J]. Surf. Coat. Technol., 2011, 206: 1102
156 Mahesh R A, Jayaganthan R, Prakash S. Evaluation of hot corrosion behaviour of HVOF sprayed Ni-5Al and NiCrAl coatings in coal fired boiler environment [J]. Surf. Eng., 2010, 26: 413
157 Wang T L, Jia Y H, Wang C Y, et al. Influence of nano ceramic coating on coking characteristics of heating surface of Zhundong coal fired boiler and its engineering application [J/OL]. Therm. Power Generat., 2021. (2021-09-13).
王天龙, 贾永会, 汪潮洋等. 纳米陶瓷涂层对燃用准东煤锅炉受热面结焦特性影响研究及工程应用 [J/OL]. 热力发电, 2021. (2021-09-13).
158 Kawahara Y. An overview on corrosion-resistant coating technologies in biomass/waste-to-energy plants in recent decades [J]. Coatings, 2016, 6: 34
159 Oksa M, Metsäjoki J, Kärki J. Thermal spray coatings for high-temperature corrosion protection in biomass co-fired boilers [J]. J. Therm. Spray Technol., 2015, 24: 194
160 Hjörnhede A, Sotkovszki P, Nylund A. Erosion-corrosion of laser and thermally deposited coatings exposed in fluidised bed combustion plants [J]. Mater. Corros., 2006, 57: 307
161 Chi H T, Pans M A, Bai M W, et al. Experimental investigations on the chlorine-induced corrosion of HVOF thermal sprayed Stellite-6 and NiAl coatings with fluidised bed biomass/anthracite combustion systems [J]. Fuel, 2021, 288: 119607
162 Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel Co-based superalloys: A review [J]. Acta Metall. Sin., 2020, 56: 1
刘兴军, 陈悦超, 卢 勇等. 新型钴基高温合金多尺度设计的研究现状与展望 [J]. 金属学报, 2020, 56: 1
163 Liu Z, Li Y F, Shi D W, et al. The development of cladding materials for the accident tolerant fuel system from the Materials Genome Initiative [J]. Scr. Mater., 2017, 141: 99
164 Xie Y S, Artymowicz D M, Lopes P P, et al. A percolation theory for designing corrosion-resistant alloys [J]. Nat. Mater., 2021, 20: 789
165 Shamsipoor A, Farvizi M, Razavi M, et al. Hot corrosion behavior of Cr2AlC MAX phase and CoNiCrAlY compounds at 950oC in presence of Na2SO4 + V2O5 molten salts [J]. Ceram. Int., 2021, 47: 2347
166 Wang Z Y, Ma G S, Liu L L, et al. High-performance Cr2AlC MAX phase coatings: Oxidation mechanisms in the 900-1100oC temperature range [J]. Corros. Sci., 2020, 167: 108492
167 Richardson P, Cuskelly D, Brandt M, et al. Microstructural analysis of in-situ reacted Ti2AlC MAX phase composite coating by laser cladding [J]. Surf. Coat. Technol., 2020, 385: 125360
168 Li L, Lu J, Liu X Z, et al. AlxCoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25%NaCl at 900oC [J]. Corros. Sci., 2021, 187: 109479
169 Shang C Y, Axinte E, Sun J, et al. CoCrFeNi(W1 - xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering [J]. Mater. Des., 2017, 117: 193
170 Xiao J K, Wu Y Q, Chen J, et al. Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings [J]. Wear, 2020, 448-449: 203209
171 Vu A T, Gulati S, Vogel P A, et al. Machine learning-based predictive modeling of contact heat transfer [J]. Int. J. Heat Mass Transfer, 2021, 174: 121300
172 Zhan T Z, Fang L, Xu Y B. Prediction of thermal boundary resistance by the machine learning method [J]. Sci. Rep., 2017, 7: 7109
173 Yury K, Filiрpov M, Makarov A, et al. Arc-sprayed Fe-based coatings from cored wires for wear and corrosion protection in power engineering [J]. Coatings, 2018, 8: 71
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] XING Zhanping;HAN Yafang(Beijing Institute of Aeronautical Materials; Beijing 100095)CHENG Zhiying (Tsinghua University; Beijing 100084). TEM STUDY ON THE MICROSTRUCTURE OF THE NiCrAlYSi COATING/IC6 ALLOY SUBSTRATE[J]. 金属学报, 1998, 34(11): 1149-1152.
[3] XING Jiandong; WANG Wenhu; GAO Yimin; WANG Enzhe(Xi'an jiaotong University; Xi'an 710049)(Manuscript received 1995-04-17; in revised form 1995-11-13). CORROSION OF Fe-Cr-Mn ALLOY CONTAINING EUTECTIC CARBIDE UNDER SULFUR ATMOSPHERE[J]. 金属学报, 1996, 32(2): 191-196.
No Suggested Reading articles found!