Corrosion-Erosion Mechanism and Research Prospect of Bare Materials and Protective Coatings for Power Generation Boiler
ZHANG Shihong1,2(), HU Kai1,2, LIU Xia1, YANG Yang1
1.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma'anshan 243002, China 2.School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
Cite this article:
ZHANG Shihong, HU Kai, LIU Xia, YANG Yang. Corrosion-Erosion Mechanism and Research Prospect of Bare Materials and Protective Coatings for Power Generation Boiler. Acta Metall Sin, 2022, 58(3): 272-294.
Since the “emission peak-carbon neutrality” goal was proposed, coal-fired boilers, which are major power supply equipment and CO2 emission sites, have been gradually developed to zero-carbon emission biomass and low-carbon coal/biomass cofired boiler. The corrosion and erosion behavior of the sulfur and chlorine components of coal and biomass poses a serious threat to the safety and long-term operation of boilers, and protective coatings have become a convenient and efficient way to improve the corrosion and erosion resistance of boilers. This paper reviews recent research progress on high-temperature corrosion and erosion of bare materials and protective coatings used in coal-fired, biomass, and coal/biomass cofired boilers. The mechanism of sulfur corrosion and alkali chlorine corrosion in coal-burning and biomass combustion environments is summarized. The ash deposition-impaction mechanism in coal/biomass cofired environments is described. The current application status of boiler bare materials is introduced, and the design principles, preparation processes, and application status of alloy, ceramic, and metal-ceramic coatings in corrosive and erosive environments are summarized. Based on the current findings, future research on corrosion and erosion of boilers should focus on imperfect hot corrosion mechanisms, accurate corrosion-wear prediction models and types of protective coatings. Finally, material genome engineering and machine learning are proposed to accelerate material research/development and study the corrosion-erosion mechanisms as well as multifactor coupling models. There is a need to integrate powder synthesis methods, coating structure designs, and in-service performance into the development of new protective coatings.
Fig.1 Schematic of the distribution of “boiler pipes” of power generating boiler[57]
Material
Tm / oC
Ref.
Na2SO4
884
[63]
K2SO4
1069
[63]
Na2S2O7
401
[63]
K2S2O7
325
[63]
Na3Fe(SO4)3
624
[63]
K3Fe(SO4)3
618
[63]
Na2SO4-CoSO4
575
[71]
Na2SO4-NiSO4
631
[71]
Table 1 Melting points (Tm) of various sulfate/pyrosulfate salts and eutectic salts[63,71]
Fig.2 Schematic of the process of hot corrosion induced by molten sulfate salts[63]
Fig.3 Ash corrosion of tubes in biomass boiler[29]
Fig.4 Schematics of hot corrosion process induced by KCl molten salt
Fig.5 Schematics of ash deposition-impaction mechanism on a heat transfer tube[43]
Steel
C
Cr
Mo
V
Nb
Ni
Other
20G[96]
0.17-0.24
-
-
-
-
-
-
12CrMoVG[96]
0.08-0.15
0.90-1.20
0.25-0.35
0.15-0.30
-
-
-
T11[98]
0.05-0.15
1.00-1.50
0.44-0.65
-
-
-
-
T23[98]
0.04-0.10
1.90-2.60
0.05-0.30
0.20-0.30
0.02-0.08
-
W (1.45-1.75)
Improve red-hardness and
heat resistance
T24[62]
0.05-0.10
2.20-2.60
0.90-1.10
-
-
Ti (0.05-0.10)
Refine the grain and reduce
cold shortness
T91[98]
0.08-0.12
8.00-9.50
0.85-1.05
0.18-0.25
0.06-0.10
-
-
T92[97]
0.07-0.13
8.50-9.50
0.30-0.60
0.15-0.25
0.04-0.09
-
W (1.50-2.00)
TP304[99]
≤ 0.08
18.00-20.00
-
-
-
8.00-11.00
-
TP347[99]
≤ 0.10
17.00-19.00
-
-
0.80-1.50
9.00-13.00
-
Super304H[97]
0.07-0.13
17.00-19.00
-
-
0.30-0.60
7.50-10.50
Cu (2.50-3.50)
Improve strength and
toughness and corrosion
resistance
HR3C[100]
≤ 0.10
24.00-26.00
-
-
0.20-0.60
19.00-22.00
-
Table 2 Main alloy element chemical compositions and functions of steels for boiler[62,96-100]
Alloy
Si
Cr
Al
Ti
W
Mo
Co
Ni
Fe
Superfer 800H[101]
0.60
19.50
0.34
0.44
-
-
-
30.80
Bal.
A 286[102]
0.50
13.60
0.25
1.99
-
1.18
0.32
24.10
Bal.
Inconel 718[103]
0.18
19.00
0.30
0.90
-
3.05
-
Bal.
18.50
Inconel 600[103]
-
15.50
-
-
-
-
-
Bal.
10.00
Superco 605[103]
0.30
20.00
-
-
-
-
Bal.
10.00
3.00
Stellite-6[104]
1.09
28.27
-
-
4.51
-
Bal.
2.80
2.66
Table 3 Chemical compositions of high temperature alloy for boiler[101-104]
Technology
Flame property
Coating property
Temperature / oC
Velocity / (m·s-1)
Porosity / %
Bonding strength / MPa
AS[32]
> 6000
50-100
10-20
25-50
PS[32]
10000-15000
300-1000
5-10
20-60
D-gun[113]
5500
> 2500
< 2
> 70
HVOF[113]
2500-5500
500-1200
< 2
> 70
CS[32]
0-700
300-1200
< 5
> 70
Table 4 Comparison of thermal spray technology in the field of boiler protective[32,113]
Fig.6 Relevant thermal spraying technology proportion in the field of boiler protection
Coating
Substrate
Coating
Corrosion
Cycle
Molten salt
Hot corrosion rate
preparation
temperature
time
composition
mg·cm-2
process
oC
h
(mass fraction)
Coating
Substrate
Ni-21Cr
304 s.s.
HVOF
650
100
NaCl + Na2SO4 +
35.00
-
Ni-15Cr
KCl + K2SO4
48.00
Ni-11Cr
56.50
Ni-7Cr[114]
65.50
FeCrAl[115]
T92
HVOF
700
1000
37.5%Na2SO4 +
37.5%K2SO4 +
25%Fe2O3
70
-
750
130
800
170
FeCrNiMoSi[116]
T91
PS
700
84
Na2SO4-30%K2SO4
8.0
-
Ti-50Al
Al-30Cr[117]
Superfer 800H
PS + Nitriding
900
50
Na2SO4-60%V2O5
8.5
24.5
12.0
NiCrBSi[118]
Inconel 600
HVOF
900
50
Na2SO4-60%V2O5
9.1
15.3
Inconel 601
10.5
26
Superfer 800H
9.2
46
Ni-Cr
T91
D-gun
900
100
Na2SO4-60%V2O5
66.3
73.0
Stellite-21[119]
67.2
NiCrAlY
Superfer 800H
PS
900
50
Na2SO4-60%V2O5
5.4
51.6
Ni-20Cr
10.2
Stellite-6
32.4
Ni3Al[120]
16.2
Ni-50Cr[121]
T22
Cold spray
900
50
Na2SO4-60%V2O5
48
218
SA 516
29
245
Ni-30Cr
20G
Arc spray
750
100
Na2SO4-30%K2SO4
4.3
-
Ni-45Cr
3.2
Ni-50Cr[122]
2.9
NiCr
Carbon steel
HVAF
600
168
KCl
11.32
-
NiAl[123]
2.49
NiCrAl
Carbon steel
HVAF
600
168
KCl
1.49
-
NiCrMoSi[105]
0.67
Table 5 Comparison of hot corrosion rates for different alloy coatings[105,114-123]
Coating
Substrate
Coating
Corrosion
Cycle
Molten salt
Hot corrosion rate
time
mg·cm-2
preparation
Temperature
composition
h
Coating
Substrate
process
oC
(mass fraction)
Al2O3[124]
304L
PS
900
168
Actualwaste
Peeling
-
energy furnace
Cr2O3[125]
T22
PS
850
25
Na2SO4-40%V2O5
50.93
65.16
Cr2O3[126]
T11
D-gun
900
50
Na2SO4-60%V2O5
24.00
25.00
NiCrAlCo-Y2O3 /
309 s.s.
PS
600
168
10.2%KCl +
-
-
ZrO2-8Y2O3[127]
11.5%Na2CO3 +
72.9%Na2SO4 +
4.4%K2SO4
NiCr/Cr2O3-50Al2O3[128]
T22
D-gun
900
50
Na2SO4-60%V2O5
10.50
364.17
Superfer 800H
21.55
26.58
NiCr/Al2O3-40TiO2[129]
Inconel 625
PS
800
50
K2SO4-60%NaCl
7.00
15.50
NiCr/Al2O3
T11
PS
900
1000
Actual coal boiler
113.27
135.96
NiCr/Al2O3-4CNT[130]
11.27
135.96
ZrO2-Y2O3-6CNT[131]
T91
PS
750
50
Na2SO4-60%V2O5
3.54
70.12
Table 6 Comparison of hot corrosion rates for different ceramic coatings[124-131]
Coating
Substrate
Coating
Corrosion
Cycle
Molten salt
Hot corrosion
time
rate / (mg·cm-2)
preparation
temperature
composition
process
oC
h
(mass fraction)
Coating
Substrate
Cr3C2-25NiCr
Superni 600
D-gun
900
100
Na2SO4-25%NaCl
5.0
-
Cr3C2-25NiCr-0.4%CeO2[132]
7.0
Cr3C2-NiCr-Zr[133]
Superni 600
D-gun
900
100
40%Na2SO4-
7.0
-
Superni 718
10%NaCl-40%K2SO4-
3.5
Superco 605
10%KCl
11.7
Cr3C2-25NiCr/WC-Co[134]
T22
HVOF
700
50
Na2SO4-82%Fe2(SO4)3
8.8
77.8
Ni-20Cr-TiC
T22
Cold spray
900
50
Na2SO4-60%V2O5
40
220
Ni-20Cr-TiC-Re[135]
20
FeCrNiAlMnB-Cr3C2 [136]
AISI 1020
Arc spray
750
100
Na2SO4 + 25%K2SO4
3.5
127.1
Na2SO4 + 25%NaCl
11.1
130.1
Cr3C2-NiCr[137]
T91
HVOF +
900
50
Na2SO4-60%V2O5
236
-
sealing + heat
25
treatment
68
NiCrBSi-TiB2[138]
Carbon steel
HVOF
800
200
Na2SO4-60%V2O5
7
-
Table 7 Comparison of hot corrosion rates for different metallic-ceramic coatings[132-138]
Fig.7 Schematics of preparation process of NiCrBSi-ZrB2 powder and coating
Fig.8 Hot corrosion and high temperature wear performances of NiCrBSi-ZrB2 coating
Coating
Substrate
Coating
Test
Cycle
Erodent
Impact
Thickness loss (mm) /
time
angle
Volume loss (mm3) /
preparation
temperature
material
min
(o)
Weight loss (mg) /
process
oC
Erosion wear rate
Coating
Substrate
NiCrBSi-Al2O3[146]
304 s.s.
PS
450
10
Al2O3
30
3.4 × 10-5
8.5 × 10-5
Cr2C3-NiCr
Carbon steel
HVAF
Room
10
Al2O3
30
0.69 mm3
-
Cr2C3-FeCr
temperature
0.68 mm3
-
Cr2C3-WC-MA[147]
0.52 mm3
-
NiCrAlY[148]
Superni 75
PS
540
60000
Actual coal
-
0.46 mm
0.46 mm
0.40 mm
0.49 mm
-
Superni 600
fired boiler
-
-
Superni 718
-
-
Superfer 800
-
-
Cr2C3-25NiCr
304 s.s.
HVOF
400
60
Al2O3
30
39 mg
-
WC-10Co4Cr[149]
51 mg
WC-Co
T12
D-gun
400
5
Al2O3
30
2.5 × 10-5
5.0 × 10-5
Stellite 6
2.5 × 10-5
Stellite 21[150]
2.4 × 10-5
Ni-20Cr
SA 516
Cold spray
700
90000
Actual coal
-
0.21 mm
0.50 mm
Ni-20Cr-TiC
fired boiler
0.12 mm
Ni-20Cr-TiC-Re[151]
0.11 mm
Ni-20Cr
T22
Arc spray
750
90000
Actual coal
-
0.06 mm
0.51 mm
Ni-5Al[152]
fired boiler
0.16 mm
Al2O3-3TiO2[153]
T11
D-gun
700
90000
Actual coal
-
0.25 mm
2.08 mm
T22
fired boiler
0.23 mm
1.71 mm
Table 8 Comparison of erosion wear rates for different thermal spray coatings[146-153]
1
Tong D, Zhang Q, Zheng Y X, et al. Committed emissions from existing energy infrastructure jeopardize 1.5oC climate target [J]. Nature, 2019, 572: 373
2
Maurya P K, Mondal S, Kumar V, et al. Roadmap to sustainable carbon-neutral energy and environment: Can we cross the barrier of biomass productivity? [J]. Environ. Sci. Pollut. Res., 2021, 28: 49327
3
Liu Z, Ciais P, Deng Z, et al. Carbon monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production [J]. Sci. Data, 2020, 7: 392
4
Tong D, Zhang Q, Davis S J, et al. Targeted emission reductions from global super-polluting power plant units [J]. Nat. Sustain., 2018, 1: 59
5
Pfeiffer A, Hepburn C, Vogt-Schilb A, et al. Committed emissions from existing and planned power plants and asset stranding required to meet the Paris Agreement [J]. Environ. Res. Lett., 2018, 13: 054019
6
Edenhofer O, Steckel J C, Jakob M, et al. Reports of coal's terminal decline may be exaggerated [J]. Environ. Res. Lett., 2018, 13: 024019
7
Davis S J, Caldeira K, Matthews H D. Future CO2 emissions and climate change from existing energy infrastructure [J]. Science, 2010, 329: 1330
8
The United Nations. Paris Agreement [EB/OL]. The 21st United Nations Climate Change Conference, Paris, 2015.
9
Ministry of Ecology and Environment of the People's Republic of China. China's policy and action on handling climate change 2020 annual report [EB/OL]. (2021-07-13).
Global Energy Interconnection Development and Cooperation Organization. Research on China's “14th five-year plan” for electric power development [R]. Beijing: Global Energy Interconnection Development and Cooperation Organization, 2020
The Comprehensive Research Group for Energy Consulting and Research. Strategic research on promoting energy revolution of production and consumption [J]. Strat Study CAE, 2015, 17(9): 11
Zhao X G, Li A. A multi-objective sustainable location model for biomass power plants: Case of China [J]. Energy, 2016, 112: 1184
13
Tan Q L, Wang T R, Zhang Y M, et al. Nonlinear multi-objective optimization model for a biomass direct-fired power generation supply chain using a case study in China [J]. Energy, 2017, 139: 1066
14
Yi Q, Zhao Y J, Huang Y, et al. Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom [J]. Appl. Energy, 2018, 225: 258
15
Goerndt M E, Aguilar F X, Skog K. Drivers of biomass co-firing in U.S. coal-fired power plants [J]. Biomass Bioenergy, 2013, 58: 158
16
Wu C Z, Zhou Z Q, Ma L L, et al. Comparative study on biomass power generation technologies [J]. Renew. Energy Resour., 2008, 26(3): 34
Roni M S, Chowdhury S, Mamun S, et al. Biomass co-firing technology with policies, challenges, and opportunities: A global review [J]. Renew. Sust. Energy Rev., 2017, 78: 1089
18
Mun T Y, Tumsa T Z, Lee U, et al. Performance evaluation of co-firing various kinds of biomass with low rank coals in a 500 MWe coal-fired power plant [J]. Energy, 2016, 115: 954
19
Cebrucean D, Cebrucean V, Ionel I. Modeling and performance analysis of subcritical and supercritical coal-fired power plants with biomass co-firing and CO2 capture [J]. Clean Technol. Environ. Policy, 2020, 22: 153
20
Fogarasi S, Cormos C C. Technico-economic assessment of coal and sawdust co-firing power generation with CO2 capture [J]. J. Clean. Prod., 2015, 103: 140
21
National Energy Administration. The “13th Five-Year Plan” for biomass energy development [EB/OL]. (2016-12-06).
Zhang S X, Shi L, Xu Y F, et al. Application of power generation by coupling direct-combustion of biomass, solid waste and coal [J]. Power Syst. Eng., 2021, 37(4): 12
Agbor E, Oyedun A O, Zhang X L, et al. Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas [J]. Appl. Energy, 2016, 169: 433
25
Zhang D W, Fan H D, Zhao B, et al. Development of biomass power generation technology at home and abroad [J]. Huadian Technol., 2021, 43(3): 70
Deng J X, Ding Z L, Zhou H M, et al. Performance and wear characteristics of ceramic, cemented carbide, and metal nozzles used in coal-water-slurry boilers [J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 919
28
Nagarajan R, Ambedkar B, Gowrisankar S, et al. Development of predictive model for fly-ash erosion phenomena in coal-burning boilers [J]. Wear, 2009, 267: 122
29
Niu Y Q, Tan H Z, Hui S. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures [J]. Prog. Energy Combust. Sci., 2016, 52: 1
30
Chen H, Pan P Y, Zhao Q X, et al. Coupling mechanism of viscose ash deposition and dewpoint corrosion in industrial coal-fired boiler [J]. CIESC J., 2017, 68: 4774
Xiong X H, Lv Z M, Tan H Z, et al. A typical super-heater tube leakage and high temperature corrosion mechanism investigation in a 260 t/h circulated fluidized boiler [J]. Eng. Fail. Anal., 2020, 109: 104255
32
Zhang X J, Liu H, Chen T Z, et al. Application of coatings to alleviate fireside corrosion on heat transfer tubes during the combustion of low-grade solid fuels: A review [J]. Energy Fuels, 2020, 34: 11752
33
Hu S H, Ni Y G, Yin Q, et al. Research on element migration and ash deposition characteristics of high-alkali coal in horizontal liquid slagging cyclone furnace [J]. Fuel, 2022, 308: 121962
34
Feng Y L, Wei Q, Li H, et al. Summarization of the research on high-temperature erosion test method and mechanisms [J]. Boiler Technol., 2008, 39(4): 62
Vicenzi J, Villanova D L, Lima M D, et al. HVOF-coatings against high temperature erosion (~300oC) by coal fly ash in thermoelectric power plant [J]. Mater. Des., 2006, 27: 236
36
Pérez M G, Vakkilainen E, Hyppänen T. Unsteady CFD analysis of Kraft recovery boiler fly-ash trajectories, sticking efficiencies and deposition rates with a mechanistic particle rebound-stick model [J]. Fuel, 2016, 181: 408
37
Dizaji H B, Zeng T, Hölzig H, et al. Ash transformation mechanism during combustion of rice husk and rice straw [J]. Fuel, 2022, 307: 121768
38
Pyykönen J, Jokiniemi J. Modelling alkali chloride superheater deposition and its implications [J]. Fuel Process. Technol., 2003, 80: 225
39
Maj I, Kalisz S, Szymajda A, et al. The influence of cow dung and mixed straw ashes on steel corrosion [J]. Renew Energy, 2021, 177: 1198
40
Liu G Q, Li S Q, Yao Q. A JKR-based dynamic model for the impact of micro-particle with a flat surface [J]. Powder Technol., 2011, 207: 215
41
Konstandopoulos A G. Deposit growth dynamics: Particle sticking and scattering phenomena [J]. Powder Technol., 2000, 109: 262
42
Forstner M, Hofmeister G, Jöller M, et al. CFD simulation of ash deposit formation in fixed bed biomass furnaces and boilers [J]. Prog. Comput. Fluid Dynam., 2006, 6: 248
43
Cai Y T, Tay K, Zheng Z M, et al. Modeling of ash formation and deposition processes in coal and biomass fired boilers: A comprehensive review [J]. Appl. Energy, 2018, 230: 1447
44
Doshi V, Vuthaluru H B, Korbee R, et al. Development of a modeling approach to predict ash formation during co-firing of coal and biomass [J]. Fuel Process. Technol., 2009, 90: 1148
45
Mahajan S, Chhibber R. Hot corrosion studies of boiler steels exposed to different molten salt mixtures at 950oC [J]. Eng. Fail. Anal., 2019, 99: 210
46
Meißner T M, Grégoire B, Montero X, et al. Long-term corrosion behavior of Cr diffusion coatings on ferritic-martensitic superheater tube material X20CrMoV12-1 under conditions mimicking biomass (co-)firing [J]. Energy Fuels, 2020, 34: 10989
47
Montero X, Ishida A, Rudolphi M, et al. Breakaway corrosion of austenitic steel induced by fireside corrosion [J]. Corros. Sci., 2020, 173: 108765
48
Cao C, Jiang C Y, Lu J T, et al. Corrosion behavior of austenitic stainless steel with different Cr contents in 700oC coal ash/high sulfur flue-gas environment [J]. Acta Metall. Sin., 2022, 58: 67
Hagman H, Boström D, Lundberg M, et al. Alloy degradation in a co-firing biomass CFB vortex finder application at 880oC [J]. Corros. Sci., 2019, 150: 136
50
Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630~700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
Gao B, Wang L, Song X, et al. Effect of pre-oxidation on high temperature oxidation and corrosion behavior of Co-Al-W-based superalloy [J]. Acta Metall. Sin., 2019, 55: 1273
Mudgal D, Verma P K, Singh S, et al. High temperature degradation of Co based superalloy in incinerator environment [J]. Adv. Mater. Res., 2012, 585: 542
53
Lu J T, Huang J Y, Yang Z, et al. Simulated fireside corrosion behavior of a wrought Ni-Fe-based superalloy for 700oC-class ultra-supercritical power plant applications [J]. J. Mater. Eng. Perform., 2019, 28: 7390
54
Zhou H X, Wang J W, Meng X H, et al. The corrosion mechanism of Fe-based superalloy in molten NaCl-52wt-%MgCl2 at 520oC [J]. Corros. Eng. Sci. Technol., 2017, 52: 261
55
Cheng H S, Liu G, Lei G, et al. Research progress of high temperature corrosion protection coating technology for coal-burning boiler heating surface [J]. Mater. Rep., 2020, 34(): 433
Singh J, Vasudev H, Singh S. Performance of different coating materials against high temperature oxidation in boiler tubes—A review [J]. Mater. Today Proc., 2020, 26: 972
57
Szymański K, Hernas A, Moskal G, et al. Thermally sprayed coatings resistant to erosion and corrosion for power plant boilers—A review [J]. Surf. Coat. Technol., 2015, 268: 153
58
Kumar S, Handa A, Chawla V, et al. Performance of thermal-sprayed coatings to combat hot corrosion of coal-fired boiler tube and effect of process parameters and post-coating heat treatment on coating performance: A review [J]. Surf. Eng., 2021, 37: 833
59
Li H, Liu D, Yao D Y. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality [J]. Proc. CSEE, 2021, 41: 6245
Long H, Huang J J. Development direction analysis of coal-fired power units' design technology during the 13th Five-Year Plan [J]. Power Generat. Technol., 2018, 39: 13
Lu J T, Gu Y F, Yang Z. Coal ash induced corrosion of three candidate materials for superheater boiler tubes of advanced ultra-supercritical power station [J]. Corros. Sci. Protect. Technol., 2014, 26: 205
Li J, Zhou R C, Tang L Y, et al. Research on high temperature fireside corrosion of water wall materials for ultra-supercritical coal fired boiler [J]. Hot Working Technol., 2017, 46(16): 19
Hu S S, Finklea H, Liu X B. A review on molten sulfate salts induced hot corrosion [J]. J. Mater. Sci. Technol., 2021, 90: 243
64
Mannava V, Rao A S, Paulose N, et al. Hot corrosion studies on Ni-base superalloy at 650oC under marine-like environment conditions using three salt mixture (Na2SO4 + NaCl + NaVO3) [J]. Corros. Sci., 2016, 105: 109
65
Yan W P, Ma K, Gao Z Y, et al. Erosion of economizer tube bundles in pressurized oxy-fuel coal-fired boiler [J]. J. Xi'an Jiaotong Univ., 2013, 47(3): 53
Young D J. High Temperature Oxidation and Corrosion of Metals [M]. Oxford: Elsevier Science, 2008: 361
67
Liang Z Y, Yu M, Zhao Q X. Investigation of fireside corrosion of austenitic heat-resistant steel 10Cr18Ni9Cu3NbN in ultra-supercritical power plants [J]. Eng. Fail. Anal., 2019, 100: 180
68
Syed A U, Simms N J, Oakey J E. Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass [J]. Fuel, 2012, 101: 62
69
Singh G, Bala N, Chawla V, et al. Hot corrosion behavior of HVOF-sprayed carbide based composite coatings for boiler steel in Na2SO4-60%V2O5 environment at 900oC under cyclic conditions [J]. Corros. Sci., 2021, 190: 109666
70
Meier G H. Invited review paper in commemoration of over 50 years of oxidation of metals: Current aspects of deposit-induced corrosion [J]. Oxid. Met., 2021, doi: 10.1007/s11085-020-10015-6
71
Lortrakul P, Trice R W, Trumble K P, et al. Investigation of the mechanisms of Type-II hot corrosion of superalloy CMSX-4 [J]. Corros. Sci., 2014, 80: 408
72
Zhong Y S, Rapp R A. Solubilities of α-Fe2O3 and Fe3O4 in fused Na2SO4 at 1200 K [J]. J. Electrochem. Soc., 1985, 132: 2498
73
Gupta D K, Rapp R A. The solubilities of NiO, Co3O4, and ternary oxides in fused Na2SO4 at 1200 K [J]. J. Electrochem. Soc., 1980, 127: 2194
74
Jose P D, Gupta D K, Rapp R A. Solubility of α-Al2O3 in fused Na2SO4 at 1200 K [J]. J. Electrochem. Soc., 1985, 132: 735
75
Zhang Y S. Solubilities of Cr2O3 in fused Na2SO4 at 1200 K [J]. J. Electrochem. Soc., 1986, 133: 655
76
Rapp R A. Hot corrosion of materials: A fluxing mechanism? [J]. Corros. Sci., 2002, 44: 209
77
Kolta G A, Hewaidy I F, Felix N S. Reactions between sodium sulphate and vanadium pentoxide [J]. Thermochim. Acta, 1972, 4: 151
78
Montero X, Galetz M C. Sulfate-vanadate-induced corrosion of different alloys [J]. Oxid. Met., 2018, 89: 499
79
Zhao Y Y, Chen D L, Chen J, et al. A mathematic model of the whole erosions in coal-fired boilers [J]. Boiler Manuf., 2002, (2): 6
Wright I G, Williams D N, Hazard H R, et al. Fireside corrosion and fly ash erosion in boilers: Final report [R]. Palo Alto, CA: Electric Power Research Institute, 1987
81
Jin T, Luo K, Fan J R, et al. Immersed boundary method for simulations of erosion on staggered tube bank by coal ash particles [J]. Powder Technol., 2012, 225: 196
82
Orumbayev R K, Bakhtiyar B T, Umyshev D R, et al. Experimental study of ash wear of heat exchange surfaces of the boiler [J]. Energy, 2021, 215: 119119
83
Singh P K, Mishra S B. Erosion behaviour of boiler component materials at room temperature and 400oC temperature [J]. Mater. Res. Express, 2020, 7: 016538
84
Sagayaraj T A D, Suresh S, Chandrasekar M. Experimental studies on the erosion rate of different heat treated carbon steel economiser tubes of power boilers by fly ash particles [J]. Int. J. Min. Metall. Mater., 2009, 16: 534
85
Yun J Y, Lee H S, Hur D H, et al. Effect of oxidation film on the fretting wear behavior of Alloy 690 steam generator tube mated with SUS 409 [J]. Wear, 2016, 368-369: 344
86
Xing X F, Wang R, Bauer N, et al. Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China [J]. Nat. Commun., 2021, 12: 3159
87
Gruber T, Schulze K, Scharler R, et al. Investigation of the corrosion behaviour of 13CrMo4-5 for biomass fired boilers with coupled online corrosion and deposit probe measurements [J]. Fuel, 2015, 144: 15
88
Zhou J, Liu Q, Zhong W Q, et al. Migration and transformation law of potassium in the combustion of biomass blended coal [J]. J. Fuel Chem. Technol., 2020, 48: 929
Chen J, Fu P F, Zhang B, et al. Deposition and sintering behavior of alkali metals and chlorine in biomass combustion [J]. J. Eng. Thermophys., 2014, 35: 1453
Lehmusto J, Yrjas P, Skrifvars B J, et al. Detailed studies on the high temperature corrosion reactions between potassium chloride and metallic chromium [J]. Mater. Sci. Forum, 2011, 696: 218
91
Uusitalo M A, Vuoristo P M J, Mäntylä T A. High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits [J]. Corros. Sci., 2004, 46: 1311
92
Sadeghimeresht E, Reddy L, Hussain T, et al. Influence of KCl and HCl on high temperature corrosion of HVAF-sprayed NiCrAlY and NiCrMo coatings [J]. Mater. Des., 2018, 148: 17
93
Wang Y B, Tan H Z. Condensation of KCl(g) under varied temperature gradient [J]. Fuel, 2019, 237: 1141
94
Lyu Z K, Long S W, Li G B, et al. Density functional theory study on chlorine corrosion of biomass furnace [J]. CIESC J., 2019, 70: 4370
Gao J K, Tong Y, Wang S C, et al. The current situation and future development tendency of biomass-coal coupling power generation system [J]. Renew. Energy Resour., 2019, 37: 501
Jin Q M, Dai G F, Wang Y B, et al. High-temperature corrosion of water-wall tubes in oxy-combustion atmosphere [J]. J. Energy Inst., 2020, 93: 1305
97
Zhang Q, Wang J Q, Chen G H, et al. Microstructures and mechanical properties of T92/Super304H dissimilar steel weld joints [J]. Chin. J. Nonferrous Met., 2013, 23: 396
Zhao Q X, Zhang Z X, Cheng D N, et al. High temperature corrosion of water wall materials T23 and T24 in simulated furnace atmospheres [J]. Chin. J. Chem. Eng., 2012, 20: 814
99
Wright I G, Dooley R B. Morphologies of oxide growth and exfoliation in superheater and reheater tubing of steam boiler [J]. Mater. High Temp., 2011, 28: 40
100
Hussain T, Syed A U, Simms N J. Trends in fireside corrosion damage to superheaters in air and oxy-firing of coal/biomass [J]. Fuel, 2013, 113: 787
101
Goyal G, Singh H, Prakash S. Effect of superficially applied ZrO2 inhibitor on the high temperature corrosion performance of some Fe-, Co- and Ni-base superalloys [J]. Appl. Surf. Sci., 2008, 254: 6653
102
Muthu S M, Arivarasu M. Investigations of hot corrosion resistance of HVOF coated Fe based superalloy A-286 in simulated gas turbine environment [J]. Eng. Fail. Anal., 2020, 107: 104224
103
Mudgal D, Singh S, Prakash S. Hot corrosion behavior of some superalloys in a simulated incinerator environment at 900oC [J]. J. Mater. Eng. Perform., 2014, 23: 238
104
Birol Y. High temperature sliding wear behaviour of Inconel 617 and Stellite 6 alloys [J]. Wear, 2010, 269: 664
105
Guo J T. The current situation of application and development of superalloys in the fields of energy industry [J]. Acta Metall. Sin., 2010, 46: 513
Israelsson N, Unocic K A, Hellström K, et al. A microstructural and kinetic investigation of the KCl-induced corrosion of an FeCrAl alloy at 600oC [J]. Oxid. Met., 2015, 84: 105
107
Okoro S C, Montgomery M, Frandsen F J, et al. Influence of preoxidation on high temperature corrosion of a Ni-based alloy under conditions relevant to biomass firing [J]. Surf. Coat. Technol., 2017, 319: 76
108
Klein L, Killian M S, Virtanen S. The effect of nickel and silicon addition on some oxidation properties of novel Co-based high temperature alloys [J]. Corros. Sci., 2013, 69: 43
109
Weng F, Yu H J, Wan K, et al. The influence of Nb on hot corrosion behavior of Ni-based superalloy at 800oC in a mixture of Na2SO4-NaCl [J]. J. Mater. Res., 2014, 29: 2596
110
Schütze M, Malessa M, Rohr V, et al. Development of coatings for protection in specific high temperature environments [J]. Surf. Coat. Technol., 2006, 201: 3872
111
Trindade V, Christ H J, Krupp U. Grain-size effects on the high-temperature oxidation behaviour of chromium steels [J]. Oxid. Met., 2010, 73: 551
112
Sadeghimeresht E, Markocsan N, Huhtakangas M, et al. Isothermal oxidation of HVAF-sprayed Ni-based chromia, alumina and mixed-oxide scale forming coatings in ambient air [J]. Surf. Coat. Technol., 2017, 316: 10
113
Davis J R. Handbook of Thermal Spray Technology [M]. Materials Park, OH: ASM International, 2004: 54
114
Wang G Y, Liu H, Chen T Z, et al. Comparative investigation on thermal corrosion of alloy coatings in simulated waste incinerator environment [J]. Corros. Sci., 2021, 189: 109592
115
Hussain T, Simms N J, Nicholls J R, et al. Fireside corrosion degradation of HVOF thermal sprayed FeCrAl coating at 700-800oC [J]. Surf. Coat. Technol., 2015, 268: 165
116
Jiang C P, Liu W Q, Wang G, et al. The corrosion behaviours of plasma-sprayed Fe-based amorphous coatings [J]. Surf. Eng., 2018, 34: 634
117
Chawla V, Sidhu B S, Rani A, et al. High-temperature corrosion behavior of some post-plasma-spraying-gas-nitrided metallic coatings on a Fe-based superalloy [J]. Mater. Corros., 2019, 70: 2157
118
Sidhu T S, Prakash S, Agrawal R D. Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni- and Fe-based superalloys in Na2SO4-60%V2O5 environment at 900oC [J]. Acta Mater., 2006, 54: 773
119
Mittal R, Singh M, Kumar P. Characterization of detonation gun thermal spray coatings on SA213T91 in simulated boiler environment [J]. Mater. Today Proc., 2019, 18: 4952
120
Singh H, Puri D, Prakash S. Some studies on hot corrosion performance of plasma sprayed coatings on a Fe-based superalloy [J]. Surf. Coat. Technol., 2005, 192: 27
121
Bala N, Singh H, Prakash S. Accelerated hot corrosion studies of cold spray Ni-50Cr coating on boiler steels [J]. Mater. Des., 2010, 31: 244
122
Cheng J, Wu Y P, Chen L Y, et al. Hot corrosion behavior and mechanism of high-velocity arc-sprayed Ni-Cr alloy coatings [J]. J. Therm. Spray Technol., 2019, 28: 1263
123
Sadeghimeresht E, Reddy L, Hussain T, et al. Chlorine-induced high temperature corrosion of HVAF-sprayed Ni-based alumina and chromia forming coatings [J]. Corros. Sci., 2018, 132: 170
124
Goutier F, Valette S, Vardelle A, et al. Behaviour of alumina-coated 304L steel in a waste-to-energy plant [J]. Surf. Coat. Technol., 2011, 205: 4425
125
Singh G, Goyal K, Bhatia R. Hot corrosion studies of plasma-sprayed chromium oxide coatings on boiler tube steel at 850oC in simulated boiler environment [J]. Iran. J. Sci. Technol. Trans. Mech. Eng., 2018, 42: 149
126
Mittal R, Singh H. Evaluation of the behavior of D-gun sprayed coatings on T-11 boiler steel at 900oC temperature [J]. Mater. Today Proc., 2020, 26: 549
127
Rao S, Frederick L, McDonald A. Resistance of nanostructured environmental barrier coatings to the movement of molten salts [J]. J. Therm. Spray Technol., 2012, 21: 887
128
Rani A, Bala N, Gupta C M. Accelerated hot corrosion studies of D-gun-sprayed Cr2O3-50% Al2O3 coating on boiler steel and Fe-based superalloy [J]. Oxid. Met., 2017, 88: 621
129
Katiki K, Yadlapati S, Chidepudi N S, et al. Performance of plasma spray coatings on Inconel 625 in air oxidation and molten salt environment at 800oC [J]. Int. J. Chem. Tech. Res., 2014, 6: 2744
130
Goyal R, Sidhu B S, Chawla V. Hot corrosion performance of plasma-sprayed multiwalled carbon nanotube-Al2O3 composite coatings in a coal-fired boiler at 900oC [J]. J. Mater. Eng. Perform., 2020, 29: 5738
131
Kumar S, Bhatia R, Singh H. Hot corrosion behaviour of CNT-reinforced zirconium yttrium composite coating at elevated temperature [J]. Mater. Today Proc., 2020, 28: 1530
132
Mudgal D, Kumar S, Singh S, et al. Corrosion behavior of bare, Cr3C2-25%(NiCr), and Cr3C2-25%(NiCr) + 0.4%CeO2-coated Superni 600 under molten salt at 900oC [J]. J. Mater. Eng. Perform., 2014, 23: 3805
133
Ahuja L, Mudgal D, Singh S, et al. A comparative study to evaluate the corrosion performance of Zr incorporated Cr3C2-(NiCr) coating at 900oC [J]. Ceram. Int., 2018, 44: 6479
134
Singh H, Kaur M, Prakash S. High-temperature exposure studies of HVOF-sprayed Cr3C2-25(NiCr)/(WC-Co) coating [J]. J. Therm. Spray Technol., 2016, 25: 1192
135
Singh H, Bala N, Kaur N, et al. Effect of additions of TiC and Re on high temperature corrosion performance of cold sprayed Ni-20Cr coatings [J]. Surf. Coat. Technol., 2015, 280: 50
136
Cheng J, Wu Y P, Shen W, et al. A study on hot corrosion performance of high velocity arc-sprayed FeCrNiAlMnB/Cr3C2 coating exposed to Na2SO4 + K2SO4 and Na2SO4 + NaCl [J]. Surf. Coat. Technol., 2020, 397: 126015
137
Chatha S S, Sidhu H S, Sidhu B S. The effects of post-treatment on the hot corrosion behavior of the HVOF-sprayed Cr3C2-NiCr coating [J]. Surf. Coat. Technol., 2012, 206: 4212
138
Wu Y S. Hot corrosion behavior of nanocrystalline NiCrBSi-TiB2 coating in Na2SO4-60%V2O5 molten salt [J]. Hot Work. Technol., 2015, 44(18): 123
Sundaresan C, Rajasekaran B, Varalakshmi S, et al. Comparative hot corrosion performance of APS and detonation sprayed CoCrAlY, NiCoCrAlY and NiCr coatings on T91 boiler steel [J]. Corros. Sci., 2021, 189: 109556
140
Hu K, Liu X, Zhang S H, et al. Effect of oxygen-fuel ratio on microstructure and hot corrosion behavior of NiCrAlY coatings in KCl molten salt [J]. Chin. J. Nonferrous Met., 2021, 31: 1545
Zhang S T, Du K P, Ren X J, et al. Effect of Si on hot corrosion resistance of CoCrAlY coating [J]. Rare Met. Mater. Eng., 2017, 46: 2807
142
Horlock A J, McCartney D G, Shipway P H, et al. Thermally sprayed Ni(Cr)-TiB2 coatings using powder produced by self-propagating high temperature synthesis: Microstructure and abrasive wear behaviour [J]. Mater. Sci. Eng., 2002, A336: 88
143
Cai J, Gao C Z, Lv P, et al. Hot corrosion behaviour of thermally sprayed CoCrAlY coating irradiated by high-current pulsed electron beam [J]. J. Alloys Compd., 2019, 784: 1221
144
Zhu S Y, Cheng J, Qiao Z H, et al. High temperature solid-lubricating materials: A review [J]. Tribol. Int., 2019, 133: 206
145
Meng Y G, Xu J, Jin Z M, et al. A review of recent advances in tribology [J]. Friction, 2020, 8: 221
146
Praveen A S, Sarangan J, Suresh S, et al. Erosion wear behaviour of plasma sprayed NiCrSiB/Al2O3 composite coating [J]. Int. J. Refract. Met. Hard Mater., 2015, 52: 209
147
Baiamonte L, Björklund S, Mulone A, et al. Carbide-laden coatings deposited using a hand-held high-velocity air-fuel (HVAF) spray gun [J]. Surf. Coat. Technol., 2021, 406: 126725
148
Mishra S B, Chandra K, Prakash S. Erosion-corrosion performance of NiCrAlY coating produced by plasma spray process in a coal-fired thermal power plant [J]. Surf. Coat. Technol., 2013, 216: 23
149
Kumar P, Sidhu B S. Characterization and high-temperature erosion behaviour of HVOF thermal spray cermet coatings [J]. J. Mater. Eng. Perform., 2016, 25: 250
150
Singh P K, Mishra S B. Studies on solid particle erosion behaviour of D-gun sprayed WC-Co, Stellite 6 and Stellite 21 coatings on SAE213-T12 boiler steel at 400oC temperature [J]. Surf. Coat. Technol., 2020, 385: 125353
151
Bala N, Singh H, Prakash S. Performance of cold sprayed Ni based coatings in actual boiler environment [J]. Surf. Coat. Technol., 2017, 318: 50
152
Kumar S, Kumar M, Handa A. Erosion corrosion behaviour and mechanical properties of wire arc sprayed Ni-Cr and Ni-Al coating on boiler steels in a real boiler environment [J]. Mater. High Temp., 2020, 37: 370
153
Sapra P K, Singh P K, Prakash S, et al. Performance of Al2O3-3%TiO2 detonation gun coated ferritic steels in coal fired boiler [J]. Int. J. Surf. Sci. Eng., 2009, 3: 145
154
Sidhu H S, Sidhu B S, Prakash S. Mechanical and microstructural properties of HVOF sprayed WC-Co and Cr3C2-NiCr coatings on the boiler tube steels using LPG as the fuel gas [J]. J. Mater. Process. Technol., 2006, 171: 77
155
Wu Y S, Zeng D C, Liu Z W, et al. Microstructure and sliding wear behavior of nanostructured Ni60-TiB2 composite coating sprayed by HVOF technique [J]. Surf. Coat. Technol., 2011, 206: 1102
156
Mahesh R A, Jayaganthan R, Prakash S. Evaluation of hot corrosion behaviour of HVOF sprayed Ni-5Al and NiCrAl coatings in coal fired boiler environment [J]. Surf. Eng., 2010, 26: 413
157
Wang T L, Jia Y H, Wang C Y, et al. Influence of nano ceramic coating on coking characteristics of heating surface of Zhundong coal fired boiler and its engineering application [J/OL]. Therm. Power Generat., 2021. (2021-09-13).
Kawahara Y. An overview on corrosion-resistant coating technologies in biomass/waste-to-energy plants in recent decades [J]. Coatings, 2016, 6: 34
159
Oksa M, Metsäjoki J, Kärki J. Thermal spray coatings for high-temperature corrosion protection in biomass co-fired boilers [J]. J. Therm. Spray Technol., 2015, 24: 194
160
Hjörnhede A, Sotkovszki P, Nylund A. Erosion-corrosion of laser and thermally deposited coatings exposed in fluidised bed combustion plants [J]. Mater. Corros., 2006, 57: 307
161
Chi H T, Pans M A, Bai M W, et al. Experimental investigations on the chlorine-induced corrosion of HVOF thermal sprayed Stellite-6 and NiAl coatings with fluidised bed biomass/anthracite combustion systems [J]. Fuel, 2021, 288: 119607
162
Liu X J, Chen Y C, Lu Y, et al. Present research situation and prospect of multi-scale design in novel Co-based superalloys: A review [J]. Acta Metall. Sin., 2020, 56: 1
Liu Z, Li Y F, Shi D W, et al. The development of cladding materials for the accident tolerant fuel system from the Materials Genome Initiative [J]. Scr. Mater., 2017, 141: 99
164
Xie Y S, Artymowicz D M, Lopes P P, et al. A percolation theory for designing corrosion-resistant alloys [J]. Nat. Mater., 2021, 20: 789
165
Shamsipoor A, Farvizi M, Razavi M, et al. Hot corrosion behavior of Cr2AlC MAX phase and CoNiCrAlY compounds at 950oC in presence of Na2SO4 + V2O5 molten salts [J]. Ceram. Int., 2021, 47: 2347
166
Wang Z Y, Ma G S, Liu L L, et al. High-performance Cr2AlC MAX phase coatings: Oxidation mechanisms in the 900-1100oC temperature range [J]. Corros. Sci., 2020, 167: 108492
167
Richardson P, Cuskelly D, Brandt M, et al. Microstructural analysis of in-situ reacted Ti2AlC MAX phase composite coating by laser cladding [J]. Surf. Coat. Technol., 2020, 385: 125360
168
Li L, Lu J, Liu X Z, et al. AlxCoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25%NaCl at 900oC [J]. Corros. Sci., 2021, 187: 109479
169
Shang C Y, Axinte E, Sun J, et al. CoCrFeNi(W1 - xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering [J]. Mater. Des., 2017, 117: 193
170
Xiao J K, Wu Y Q, Chen J, et al. Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings [J]. Wear, 2020, 448-449: 203209
171
Vu A T, Gulati S, Vogel P A, et al. Machine learning-based predictive modeling of contact heat transfer [J]. Int. J. Heat Mass Transfer, 2021, 174: 121300
172
Zhan T Z, Fang L, Xu Y B. Prediction of thermal boundary resistance by the machine learning method [J]. Sci. Rep., 2017, 7: 7109
173
Yury K, Filiрpov M, Makarov A, et al. Arc-sprayed Fe-based coatings from cored wires for wear and corrosion protection in power engineering [J]. Coatings, 2018, 8: 71