Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (12): 27-33    DOI:
Current Issue | Archive | Adv Search |
CORROSION FATIGUE CRACK PROPAGATION OF MARTENSITIC AND BAINITIC GC-4 ULTRA-HIGH STRENGTH STEEL
LIU Xiaokun;WANG Jianjun;LU Minxu;JIN Shi;FU Xiangjiong Xi'an Petroleum Institute Northwestern Polytechnical University; Xi'an
Cite this article: 

LIU Xiaokun;WANG Jianjun;LU Minxu;JIN Shi;FU Xiangjiong Xi'an Petroleum Institute Northwestern Polytechnical University; Xi'an. CORROSION FATIGUE CRACK PROPAGATION OF MARTENSITIC AND BAINITIC GC-4 ULTRA-HIGH STRENGTH STEEL. Acta Metall Sin, 1993, 29(12): 27-33.

Download:  PDF(1332KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The property and mechanism of corrosion fatigue (CF) crack propagation ofmartensitic and bainitic 40CrMnSiMoVA (GC-4) ultra-high strength steel was investigated.There is a platform region on CF crack propagation curve of the GC-4 steel with differentmicrostructure in 3.5% NaCl solution, which is similar to its stress corrosion crackingbehaviour. The CF crack propagation rate (in platform region) of martensitic GC-4 steel ismuch higher than that of bainitic one. Through fracture surface examination and theoreticalanalysis, it is revealed that hydrogen embrittlement plays an important role in the CF pro-cess of GC-4 steel.
Key words:  martensite      bainite      corrosion fatigue      crack propagation rate      hydrogen embrittlement      steel 40CrMnSiMoVA      steel GC-4     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I12/27

1 Pawloski B, Mazur A, Gorczyca S. Corrosion Science, 1991, 32: 685
2 Bulloch J H. Theor Appl Fract Mech, 1991; 16: 1
3 Kerr R, Solana F. et al. Metall Trans, 1987; 18: 1011
4 郑文龙,朱国培,欧阳怀谨,李革.金属学报,1986;22:A275
5 陈大明.西北工业大学博士学位论文,1988
6 路民旭,刘晓坤,王建军等.航空学报,1990;11:12
7 王建军,刘晓坤,路民旭.航空学报,1988;9:13
8 Jin Shi, Liu Xiaokun. In: Goel V S ed., Proc Int Confon Fatigue, Corrosion Cracking, Fracture Failure Analysis, Salt Lake City, USA, 1985: 69
9 朱永昌.金属的应力腐蚀断裂.北京航空学院,1982
10 Solana F, et al. Metall Trans, 1987; 18A: 1023
11 Turnbull A. Br Corro J, 1980; 15: 162
12 Turnbull A. ASTM STP801, 1982
13 林栋梁,吴建生,杨正瑞.金属学报,1983;19:1
14 刘晓坤,王建军,金石.航空学报,1989;10:A479
15 刘晓坤.西北工业大学博士学位论文,1990?
[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[3] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[4] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[7] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[8] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[9] XIAO Na, HUI Weijun, ZHANG Yongjian, ZHAO Xiaoli. Hydrogen Embrittlement Behavior of a Vacuum-Carburized Gear Steel[J]. 金属学报, 2021, 57(8): 977-988.
[10] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[11] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[12] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[13] TAN Jibo, WANG Xiang, WU Xinqiang, HAN En-Hou. Corrosion Fatigue Behavior of 316LN Stainless Steel Hollow Specimen in High-Temperature Pressurized Water[J]. 金属学报, 2021, 57(3): 309-316.
[14] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[15] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
No Suggested Reading articles found!