Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (12): 34-38    DOI:
Current Issue | Archive | Adv Search |
FATIGUE CRACK INITIATION ON NON-OVERLAPPED LASER HARDENED 40Cr STEEL
LIU Changsheng;CAI Qingkui;XU Hao Northeastern University; Shenyang
Cite this article: 

LIU Changsheng;CAI Qingkui;XU Hao Northeastern University; Shenyang. FATIGUE CRACK INITIATION ON NON-OVERLAPPED LASER HARDENED 40Cr STEEL. Acta Metall Sin, 1993, 29(12): 34-38.

Download:  PDF(1583KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Study was carried out of the effect of overlapping or not on the fatiguemacro-crack initiation on the notch root of 40Cr steel specimens treated by newly developedtechnique of laser local hardening. The resistance to fatigue macro-crack initiation may bemade by grain refining, marstrengthening and residual compressive stress. In the light ofbehaviour of fatigue fracture, the superiority of local laser hardening to improve the fatigueresistance is in the range of low stress amplitude and high cycles. The morphology of the frac-ture surface in the hardened specimen is a mixed one of transgranular and intergranular.
Key words:  40Cr steel      laser      fatigue      macro-crack initiation     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I12/34

1 Gnanamuthu D S et al. In: Ferris S D et al, eds. Laser-Solid Interaction and Laser Processing, New York: AIP, 1979: 173
2 Kikuchi M et al. Proceedings of First Joint U.S./Japan International Laser Processing Conference, Toledo, Ohio, LIA, 1981
3 Cai Qing-kui, In: Barnby J T ed., Fatigue Prevention and Design, 1986: 333
4 #12
5 #12
6 董鄂,陈爱华.全国第三次高能密度热处理会议文集,长春,1991:60
7 Chilton J M, Kelly P M. Acta Metall 1986; 16: 637
8 Yokota M J, Lai G Y. Metall Trans, 1975; 6A: 1837
9 Lai G Y, Wood W E, Clark R A. Metall Trans 1974; 5: 1663
10 Bahre K. Z Werksto. fftech, 1978; 9: 45
11 刘常升.东北工学院博士论文,1992:41.
[1] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[7] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[8] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[9] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[10] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[11] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[12] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[13] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[14] WANG Meng, YANG Yongqiang, Trofimov Vyacheslav, SONG Changhui, ZHOU Hanxiang, WANG Di. Effects of Particle Size on Processability of AlSi10Mg Alloy Manufactured by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 147-156.
[15] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
No Suggested Reading articles found!