Please wait a minute...
Acta Metall Sin  1993, Vol. 29 Issue (6): 88-94    DOI:
Current Issue | Archive | Adv Search |
MECHANICAL PROPERTIES AND INTERFACIAL STRUCTURES OF ALUMINIUM BORATE WHISKER REINFORCED Al COMPOSITES
NING Xiaoguang;HU Kuiyi;YE Hengqiang Changsha Institute of Technology; Changsha Laboratory of Atomic Imaging of Solids; Institute of Metal Research; Academia Sinica; ShenyangPAN Jin;lecturer;Deparment of Materials Science and Applied Chemistry Changsha Institute of Technology;Changsha 410073
Cite this article: 

NING Xiaoguang;HU Kuiyi;YE Hengqiang Changsha Institute of Technology; Changsha Laboratory of Atomic Imaging of Solids; Institute of Metal Research; Academia Sinica; ShenyangPAN Jin;lecturer;Deparment of Materials Science and Applied Chemistry Changsha Institute of Technology;Changsha 410073. MECHANICAL PROPERTIES AND INTERFACIAL STRUCTURES OF ALUMINIUM BORATE WHISKER REINFORCED Al COMPOSITES. Acta Metall Sin, 1993, 29(6): 88-94.

Download:  PDF(2157KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Quality 9Al_2O_3·2B_2O_3 whisker reinforced 6061Al or Al composites havebeen prepared by technique of squeexe casting. Mechanical properties of the 9Al_2O_32B_2O_3(w)/6061Al composites could be hardly improved by T6 treatment, owing to cause theremarkable interfacial reaction. An observation under high resolution transmission electronmicroscopy on interfaces shows that the serious chemical reaction occurs and the product isAl_2MgO_4. But no such reaction is found at the interfaces of 9Al_2O_3·2B_2O_3(w)/Al compo-site. EDS analysis on the interfaces shows that above mentioned interfacial reaction may beresulted from the interfacial segregation of Mg atoms in 6061Al matrix during sequeeze cast-ing.
Key words:  aluminium borate whisker      Al matrix composite      strength      interface structure     
Received:  18 June 1993     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1993/V29/I6/88

1 Fukunaga H, Gohda K, Ohta N. Trans Jpn Inst Met, 1983; 24: 642
2 福永秀春,合田公一,田端伸雄,材料,1985;34:64
3 Suganuma K, Fujita T, Niihara K, Suzuki N. J Mater Sci Lett, 1989; 8: 808
4 Suganuma K, Fujita T. Suzuki N, Niihara K. J Mater Sci Lett, 1990: 9: 633
5 Fukunaga H, Pan J, Ning X G. Proc 1st Canadian International Composites Conf and Exhi Montreal, Quebec, Canada, 1991: 3C: 2--1
6 隗学礼.内部资料,1992:
7 Ihara M, Imai K, Fukunaga J, Yoshida N. Yogyo-Kyokai-Shi, 1980; 88: 27
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[6] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[7] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[8] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[9] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[10] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[11] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[12] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[13] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[14] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[15] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
No Suggested Reading articles found!