Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (4): 521-525    DOI: 10.11900/0412.1961.2024.00345
Classics of the Masters Current Issue | Archive | Adv Search |
Heat-Resistant Al Alloys: Microstructural Design and Preparation
SUN Jun(), LIU Gang, YANG Chong, ZHANG Peng, XUE Hang
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

SUN Jun, LIU Gang, YANG Chong, ZHANG Peng, XUE Hang. Heat-Resistant Al Alloys: Microstructural Design and Preparation. Acta Metall Sin, 2025, 61(4): 521-525.

Download:  HTML  PDF(1435KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminum (Al) alloys, a typical lightweight material, are limited to applications at temperatures below about 200 oC. The high-temperature range of 300-400 oC has been a longstanding bottleneck for traditional Al alloys. In this study, the underlying mechanisms of this service bottleneck are first discussed, and key scientific solutions aimed at overcoming the bottleneck are proposed. A new microstructure designing strategy is proposed to develop advanced heat-resistant Al alloys through phase transformation that couples rapidly diffusing solute atoms with slowly diffusing ones. This strategy leads to three design approaches for thermal stability: (1) interfacial solute segregation at the nanoprecipitate/matrix interfaces, (2) interstitial solute ordering within the coherent nanoprecipitates, and (3) multiple interfacial coherency coupling with multiscale microstructural features. By manipulating the microalloying effect at the atomic length scale, a series of 300-400 oC heat-resistant Al alloys were developed. Furthermore, the potential development directions of the heat-resistant Al alloys are also explored as possible references for future work.

Key words:  Al alloy      thermal stability      high-temperature mechanical property      microstructural design      microalloying     
Received:  14 October 2024     
ZTFLH:  TG146.  
Fund: National Natural Science Foundation of China(U23A6013, 92360301, U2330203);Programme of Introducing Talents of Discipline to Universities(BP2018008)
Corresponding Authors:  SUN Jun, academician of the Chinese Academy of Sciences, professor,Tel: (029)82667143, E-mail: junsun@mail.xjtu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00345     OR     https://www.ams.org.cn/EN/Y2025/V61/I4/521

Fig.1  Temperature-dependent diffusivity of typical solutes[6,7] (a) and 400 oC diffusivity vs excess solid solubility (Cmax - C400: the difference between the maximum solid solubility and the solid solubility at 400 oC, atomic fraction, %) of typical solutes[5] (b) in Al alloys
Fig.2  Representative high-angle annular dark field (HAADF) image and corresponding Cu and Sc mappings of a cross-sectioned θ'-Al2Cu nanoprecipitate in the Al-Cu-Sc alloy[10] (a) and dependence of steady state creep rate on creep stress at 300 oC, in comparison with available data of other Al alloys and Al-based composites (b) (Arrow in Fig.2b indicates an increase in creep property achieved in our work)
Fig.3  Representative HAADF image to show the crystal structure of V phase, viewed along [010] (Insets show the corresponding fast Fourier transform image (top right) and colorized Z-contrast image (middle right). In top right image, an additional set of patterns is clearly detected (marked by yellow arrows) that indicate a substructure. Green, red, and blue colors in the structural sketch (bottom right) represent Al, Cu, and Sc atoms, respectively) (a), representative HAADF image showing the ΩV in situ phase transformation induced by the Sc intake at the coherent ledge (CL) (b), and tensile stress-strain curves at 400 oC, showing the tensile strength > 100 MPa achieved in Al-Cu-Mg-Ag-Sc alloy much greater than that in other comparing alloys (The inset figure demonstrates that the tensile strength > 100 MPa at 400 oC is over one time of all the reported Al alloys. HT—high temperature of 400 oC, RT—room temperature) (c)[5]
Fig.4  Representative SEM (a), TEM (b), and APT (c) images showing the multiscale microstructural features in the Al-Ce-Cu-Sc alloy; and dependence of steady state creep rate on creep stress at 300 oC, in comparison with its Sc-free Al alloys (d)
1 Shyam A, Bahl S. Heat-resistant aluminium alloys [J]. Nat. Mater., 2023, 22: 425
2 Deschamps A, Hutchinson C R. Precipitation kinetics in metallic alloys: Experiments and modeling [J]. Acta Mater., 2021, 220: 117338
3 Polmear I J, Couper M J. Design and development of an experimental wrought aluminum alloy for use at elevated temperatures [J]. Metall. Trans., 1988, 19A: 1027
4 Yang C, Zhang P, Shao D, et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition [J]. Acta Mater., 2016, 119: 68
5 Xue H, Yang C, De Geuser F, et al. Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering [J]. Nat. Mater., 2023, 22: 434
6 Rummel G, Zumkley T, Eggersmann M, et al. Diffusion of implanted 3D-transition elements in aluminum: 1. Temperature-dependence [J]. Z. Metallkd., 1995, 86:122
7 Du Y, Chang Y A, Huang B Y, et al. Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation [J]. Mater. Sci. Eng., 2003, A363: 140
8 Calderon H A, Voorhees P W, Murray J L, et al. Ostwald ripening in concentrated alloys [J]. Acta Metall. Mater., 1994, 42: 991
9 Chen B A, Liu G, Wang R H, et al. Effect of interfacial solute segregation on ductile fracture of Al-Cu-Sc alloys [J]. Acta Mater., 2013, 61: 1676
10 Gao Y H, Guan P F, Su R, et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance [J]. Mater. Res. Lett., 2020, 8: 446
doi: 10.1080/21663831.2020.1799447
11 Yi M, Zhang P, Yang C, et al. Improving creep resistance of Al-12 wt.% Ce alloy by microalloying with Sc [J]. Scr. Mater., 2021, 198: 113838
12 Yi M, Zhang P, Deng S H, et al. Atomic-scale compositional complexity ductilizes eutectic phase towards creep-resistant Al-Ce alloys with improved fracture toughness [J]. Acta Mater., 2024, 276: 120133
[1] YANG Kang, XIN Yue, JIANG Zitao, LIU Xia, XUE Zhaolu, ZHANG Shihong. Mechanical Alloying Fabrication of Nano-ZrB2-Reinforced CoNiCrAlY Composite Powders and Microstructure-Property Characterization of the Resultant Coatings[J]. 金属学报, 2025, 61(4): 619-631.
[2] WAN Jie, LI Haotian, LIU Shuji, LU Hongzhou, WANG Lisheng, ZHANG Zhendong, LIU Chunhai, JIA Jianlei, LIU Haifeng, CHEN Yuzeng. Homogenization of Nuclei in Al-Nb-B Inoculant and Its Effect on Microstructure and Mechanical Properties of Cast Al Alloy[J]. 金属学报, 2025, 61(1): 117-128.
[3] LV Yunlei, REN Yanjie, FENG Kangkang, ZHOU Mengni, WANG Wen, CHEN Jian, NIU Yan. High Temperature Oxidation Mode and Transformation Mechanism of Quaternary Co-Ni-Cr-Al Alloys[J]. 金属学报, 2024, 60(7): 947-956.
[4] XU Yang, KE Liming, NIE Hao, XIA Chun, LIU Qiang, CHEN Shujin. Precipitation Behavior of Intermetallic Compounds at the Interface of Thick Plate Friction Stir Welded Al Alloy/Mg Alloy Joints Under Local Strong Cooling[J]. 金属学报, 2024, 60(6): 777-788.
[5] LI Tianrui, XU Yuqian, WU Wenping, GAN Wenxuan, YANG Yong, LIU Guohuai, WANG Zhaodong. Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys[J]. 金属学报, 2024, 60(5): 650-660.
[6] CHEN Yuyong, SHI Guohao, DU Zhiming, ZHANG Yu, CHANG Shuai. Research Progress on Additive Manufacturing TiAl Alloy[J]. 金属学报, 2024, 60(1): 1-15.
[7] WANG Xiuqi, LI Tianrui, LIU Guohuai, GUO Ruiqi, WANG Zhaodong. Microstructure Evolution and Mechanical Properties of Ti-44Al-5Nb-1Mo-2V-0.2B Alloys in the Cross Hot-Pack Rolling Process[J]. 金属学报, 2024, 60(1): 95-106.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[12] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[13] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[14] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[15] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
No Suggested Reading articles found!