Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (5): 585-604    DOI: 10.11900/0412.1961.2023.00117
Overview Current Issue | Archive | Adv Search |
Research Status and Future Development of (Ce, La, Y)-Fe-B Permanent Magnets Based on Full High-Abundance Rare Earth Elements
LIU Zhongwu1(), ZHOU Bang1, LIAO Xuefeng1,2, HE Jiayi1,3
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
3 School of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Cite this article: 

LIU Zhongwu, ZHOU Bang, LIAO Xuefeng, HE Jiayi. Research Status and Future Development of (Ce, La, Y)-Fe-B Permanent Magnets Based on Full High-Abundance Rare Earth Elements. Acta Metall Sin, 2024, 60(5): 585-604.

Download:  HTML  PDF(4752KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The surging demand for Nd-Fe-B-based rare earth (RE) permanent magnets has led to a sharp increase in the consumption of critical RE elements, such as Nd, Pr, Dy, and Tb. As a result, the high cost of these elements has become a major issue. Judging from the perspective of economy and resource availablity, the overstock of abundant and inexpensive RE resources, including La, Ce, and Y, offers a new opportunity to develop cost-effective permanent magnets containing no critical RE elements. RE-Fe-B magnets based on full high-abundance REs, i.e., (Ce, La, Y)-Fe-B type magnets, are expected to serve as an alternative to fill the performance gap between hard ferrites and bonded Nd-Fe-B magnets. This approach can not only meet the diversified demand for permanent magnet materials in the middle- and low-end markets, but also contribute to a balanced use of RE resources. At present, however, the recognition and understanding of Ce-, La-, and Y-based RE-Fe-B permanent magnets still require further research, and the performance of these magnets in the laboratory is quite low, which makes practical applications difficult. Based on the latest domestic and overseas developments and the research results obtaned by the authors' research group, this review summarizes the research progress on Ce-, La-, and Y-based RE-Fe-B permanent magnetic alloys and associated densified magnets. The analysis highlights the magnetic properties and metallurgical behavior of rapidly quenched RE-Fe-B alloys, alloying composition design, and element interactions in multicomponent, rapidly quenched (Ce, La, Y)-Fe-B alloys. Moreover, the relationship between the preparation process, microstructure, and magnetic properties of bulk RE-Fe-B densified magnets is discussed. Finally, the improvement and future development trends of full high-abundance RE permanent magnets are also explored.

Key words:  rare earth permanent magnet      high abundance rare earth      element interaction      microstructure      magnetic property     
Received:  23 March 2023     
ZTFLH:  TM273  
Fund: National Natural Science Foundation of China(U21A2052);National Natural Science Foundation of China(52071143);China Postdoctoral Science Foundation(2022M720845)
Corresponding Authors:  LIU Zhongwu, professor, Tel: (020)22236906, E-mail: zwliu@scut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00117     OR     https://www.ams.org.cn/EN/Y2024/V60/I5/585

Fig.1  Relative abundance and utilization rate of rare earth (RE) element[4-6] (a), RE metals and the corresponding RE oxides price[7] (b), comparison of RE2Fe14B (RE = Ce, La, and Y) compounds in intrinsic magnetic properties, magnetic hardness parameter and formation energy, the data are extracted from an online database[3,9] (c), and comparison of the properties of different types of permanent magnets[11] (d) (Eforformation energy, к— magnetic hardness parameter, Js—saturation magnetic polarization, TC—Curie temperature, HA—anisotropy field, Jr—remanence, Hcj—intrinsic coercivity)
Fig.2  Schematic drawing of the Nd-Fe-B and Ce-Fe-B phase components (a), 57Fe Mössbauer spectra of the melt-spun Ce16Fe78B6 alloy measured at 300 and 77 K[17] (b), TEM image and corresponding selected area diffraction (SAED) pattern (inset) for the melt-spun Ce16Fe78B6 alloy (c), and the HRTEM image for selected area 1 in Fig.2c[17] (d) (GB—grain boundary phase; d—interplanar distance, nm)
Fig.3  XRD spectra for the as-spun (La1 - x Y x )2Fe14B alloys[28] (a), bright field TEM image (b) and corresponding SAED (c) for the as-spun La2Fe14B alloy[28], and bright field TEM image (d) and HRTEM image and corresponding fast Fourier transformation (inset) (e) for the as-spun Y2Fe14B alloy[35]
AlloyPhaseReaction formulaT / oCRef.

Ce2Fe14B

α-FeAmorphous → α-Fe513.8

[19]

Ce2Fe14BAmorphous → Ce2Fe14B610.9
α-Fe + Ce2Fe14B + Fe x BAmorphous → α-Fe + Ce2Fe14B + Fe x B689.9
L + γ-Fe + Fe2BCe2Fe14B→L + γ-Fe + Fe2B966.9
L′Ce2Fe14B→L′1047.1
γ-Fe + Fe2BL″→γ-Fe + Fe2B1056.5
L′′′γ-Fe + Fe2B→L′′′1167.7

Y2Fe14B

α-FeAmorphous → α-Fe329.2

[29]

Y2Fe14BAmorphous → Y2Fe14B622.2
Fe3B + Y2Fe14BAmorphous → Ce2Fe14B + Fe3B748.3

La2Fe14B

α-Fe + β-LaAmorphous → α-Fe + β-La404.1

[35]

β-La + α-Fe + Fe2BAmorphous → β-La + α-La + Fe2B487.1
Lα-Fe + β-La → L764.7
L′γ-Fe + Fe2B → L′1168.5
Table 1  Phase precipitation behaviors of Ce2Fe14B, La2Fe14B, and Y2Fe14B amorphous alloys during heating stage[19,29,35]
Type of alloyComposition

Hcj

kA·m-1

Jr

T

Js

T

(BH)max

kJ·m-3

TC

K

300-400 KRef.
α / (%·K-1)β / (%·K-1)
TernaryCe2Fe14B2110.421.0817.0424--[19]
Ce2Fe14B2070.571.0728.6420-0.623-0.536[40]
Ce10Fe84B61350.601.1911.3---[21]
Ce12Fe82B61670.59-21.0---[43]
Ce16Fe77B63670.470.9033.3---[17]
Ce17Fe77B63440.430.7728.5420--[44]
Ce16Fe78B63500.490.9333.8420-0.54-0.74[44]
Ce17Fe78B64940.49-33.0---[22]
Ce17Fe78B64380.46-34.2424-0.500-0.663[23]
Ce17Fe78B63520.43-29.0425-0.56-0.75[45]
La2Fe14B140.11-----[29]
Y2Fe14B1490.881.4354.1553-0.154-0.03[35]
Y2.5Fe14B2300.751.2751.7542--[35]
Y3Fe14B2810.721.1842.2546--[35]
Y16Fe78B62400.61-21.0---[36]
Quaternary(Ce0.9La0.1)2Fe14B2510.651.1246.2434-0.402-0.442[40]
(Ce0.8La0.2)2Fe14B2350.681.1547.9443-0.356-0.328
(Ce0.7La0.3)2Fe14B2140.691.1649.1456-0.292-0.299
(Ce0.7La0.3)2Fe14B1830.67-37.0---
(Ce0.6La0.4)2Fe14B2030.721.1947.0468-0.259-0.286
(Ce0.5La0.5)2Fe14B1970.681.1440.8476-0.220-0.261
(Ce0.4La0.6)2Fe14B1630.661.1234.4487-0.207-0.225
(Ce0.3La0.7)2Fe14B1340.591.0421.3493-0.179-0.208
(Ce0.2La0.8)2Fe14B320.370.872.5508--
(Ce0.1La0.9)2Fe14B90.301.171.5---
(Ce0.7La0.3)2.5Fe14B3450.601.0450.1---[38]
(Ce0.7La0.3)3Fe14B4390.691.1261.1---
(Ce0.7La0.3)3Fe14B3620.561.0046.2---
(Ce0.7La0.3)3.5Fe14B4060.530.9741.5---
(Ce0.7La0.3)4Fe14B4360.500.8938.5---
(Ce0.9La0.1)17Fe78B65200.520.9441.8427-0.463-0.631
(Ce0.8La0.2)17Fe78B64530.550.9643.2432-0.437-0.582
(Ce0.7La0.3)17Fe78B63320.581.0546.9442--
(Y0.9La0.1)2Fe14B1400.861.4152.1552-0.1460.05[28]
(Y0.8La0.2)2Fe14B1380.831.4046.2550-0.1400.04
(Y0.7La0.3)2Fe14B1330.811.3943.5547-0.1450.03
(Y0.6La0.4)2Fe14B1220.791.3839.4543-0.152-0.02
(Y0.5La0.5)2Fe14B1080.741.3730.4540-0.160-0.07
(Y0.4La0.6)2Fe14B920.711.3626.2536--
(Y0.3La0.7)2Fe14B860.651.3120.8532--
(Y0.2La0.8)2Fe14B600.561.125.1528--
(Y0.1La0.9)2Fe14B270.511.263.4---
Quaternary(Y0.9Ce0.1)2Fe14B1560.851.4056.1543-0.1530.009[46]
(Y0.8Ce0.2)2Fe14B1630.821.3752.0529-0.164-0.012
(Y0.7Ce0.3)2Fe14B1700.781.3351.1519-0.189-0.079
(Y0.6Ce0.4)2Fe14B1870.761.2948.4507-0.209-0.153
(Y0.5Ce0.5)2Fe14B2110.751.2549.8493-0.218-0.182
(Y0.4Ce0.6)2Fe14B2020.711.2140.2481-0.276-0.305
(Y0.3Ce0.7)2Fe14B2070.681.1640.3465-0.285-0.342
(Y0.2Ce0.8)2Fe14B2170.641.1339.5449-0.319-0.391
(Y0.1Ce0.9)2Fe14B2090.621.1025.5435-0.410-0.488
(Y0.5Ce0.5)17Fe78B6323--40.0519--[47]
Quinary[(Ce0.7La0.3)0.9Y0.1]2Fe14B2120.711.1951.7464-0.277-0.288
[(Ce0.7La0.3)0.8Y0.2]2Fe14B2070.741.2357.3475-0.246-0.256[48]
[(Ce0.7La0.3)0.7Y0.3]2Fe14B2040.751.2554.9487-0.236-0.182
[(Ce0.7La0.3)0.6Y0.4]2Fe14B1860.761.2851.4494-0.213-0.163
[(Ce0.7La0.3)0.5Y0.5]2Fe14B1670.771.3448.0506-0.199-0.051
[(Ce0.7La0.3)0.8Y0.2]17Fe78B63540.701.0756.5481--0.246[42]
[(Ce0.8La0.2)0.7Y0.3]17Fe78B64000.63-58.9488-0.255-0.241
[(Ce0.8La0.2)0.5Y0.5]17Fe78B63320.66-60.0515-0.197-0.102
Table 2  Magnetic properties of reported Ce-, La-, and Y-based RE-Fe-B melt-spun alloys[17,19,21-23,28,29,35,36,38,40,42-48]
Fig.4  Demagnetization curves of as-spun (Ce, La, Y)17Fe78B6 alloys (a), bright-field TEM image and EDS line scanning (inset) for the [(Ce0.8La0.2)0.7Y0.3]17Fe78B6 alloy (b)[42] (J—magnetic polarization, H—magnetic field)
Fig.5  Comparisons of Hcj and (BH)max (a), and values of α and β (b) of the as-spun (Ce, La, Y)17Fe78B6 alloys with reported Ce or Nd-based RE-Fe-B alloys[17,21-23,37,38,40,42-46,55-64]; comparison of the cost performance for as-spun (Ce, La, Y)17Fe78B6 alloys with commercial isotropic magnetic powders (c) and comparison of corrosion resistance (d) of RE-based permanent magnets[28,65-70] (Ecorr—self corrosion potential, icorr—self corrosion current density)
Fig.6  Calculated formation energiesfor (Ce1 - x La x )Fe2 phase (Inset shows the schematic illustration of the cubic CeFe2 crystal) (a), XRD refinement spectra for (Ce1 - x La x )17Fe78B6 alloys[42] (b), demagnetization curves for the as-spun Ce17Fe78 - x B6Si x (Insets in Fig.6c show the microstructure evolutions of Ce17Fe78 - x B6Si x alloys)[55] (c) and Ce16Fe78 - x B6Ge x alloys (Inset shows the HRTEM image of Ce16Fe77.8B6Ge0.2 alloy)[74] (d)
Fig.7  Demagnetization curves for the as-spun Ce17Fe78 - x B6Ta x (x = 0, 0.75) alloys (Inset shows the bright-field TEM image of Ce17Fe77.25B6Ta0.75 alloy) (a), simulation demagnetization curves of the model magnets (Inset shows Ce-Fe-B magnet model with non-magnetic particles) (b), demagnetizing field distributions for both models in the saturation state (c), and magnetization reversal behaviors both models at different reversed magnetic fields (d, e)[56] (w/o and w/ represent the magnet model without non-magnetic particles and the magnet model with non-magnetic particles, respectively; μ0Hext—external applied field, Mz —magnetization in z direction, Ms—saturation magnetization)
Fig.8  XRD spectra (a), SEM images (b1, b2), and J-H curves (c) of Ce17Fe78B6 magnets spark plasma sintered (SPSed) at 650 and 700oC[83]
Fig.9  Hysteresis loops measured parallel (//) to the pressing direction of hot-deformed Ce17Fe78B6, (Ce0.9La0.1)Fe78B6, and [(Ce0.9La0.1)0.8Y0.2)]17Fe78B6 magnets (Inset shows the demagnetization curves of the hot-deformed magnets) (a), bright field TEM images of hot-deformed Ce17Fe78B6 (b) and [(Ce0.9La0.1)0.8Y0.2)]17Fe78B6 magnets (Insets show the HRTEM images of the hot-deformed magnets) (c), EDS line-scan profiles for hot-deformed Ce17Fe78B6 magnet (d)[89], and comparison of Hcj and Jr for hot-deformed (Ce, La)-Fe-B and (Ce, La, Y)-Fe-B magnets with available reported hot-deformed Ce-Fe-B magnets[16,87-93] (e)
Fig.10  Demagnetizations curves (a) and stress-strain (σ-ε) curves (b) of Nd26.4Fe67.6Co5B, Nd6Pr2La6.7Ce13.4Fe69.3Zr1.5B1.1 and [(Ce0.7La0.3)0.8Y0.2]17Fe78B6 bonded magnets (Inset shows the macroscopic image of bonded [(Ce0.7La0.3)0.8Y0.2]17Fe78B6 magnet), and metallographic microstructures of Nd26.4Fe67.6Co5B (c) and [(Ce0.7La0.3)0.8Y0.2]17Fe78B6 bonded (d) magnets[103]
Fig.11  Demagnetizations curves (Inset shows the optical image of [(Ce0.7La0.3)0.8Y0.2]17Fe78B6 rubber magnet) (a) and tensile curves (Inset shows the metallographic microstructure of [(Ce0.7La0.3)0.8Y0.2]17Fe78B6 rubber magnet) (b) of Nd26.4Fe67.6Co5B, Nd6Pr2La6.7Ce13.4Fe69.3Zr1.5B1.1, and [(Ce0.7La0.3)0.8Y0.2]17Fe78B6 rubber magnets, comparison of magnetic properties of (Ce, La, Y)-Fe-B rubber magnets with commercial rubber ferrite and Nd-Fe-B rubber magnet (c), and potential applications of the (Ce, La, Y)-Fe-B rubber magnets (d) [105]
1 Zhao L Z, He J Y, Li W, et al. Understanding the role of element grain boundary diffusion mechanism in Nd-Fe-B magnets[J]. Adv. Funct. Mater., 2022, 32: 2109529
doi: 10.1002/adfm.v32.8
2 Liu Z W, He J Y. Several issues on the development of grain boundary diffusion process for Nd-Fe-B permanent magnets[J]. Acta Metall. Sin., 2021, 57: 1155
刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57: 1155
doi: 10.11900/0412.1961.2020.00438
3 Coey J M D. Perspective and prospects for rare earth permanent magnets[J]. Engineering, 2020, 6: 119
doi: 10.1016/j.eng.2018.11.034
4 Wu Y C, Gao Z Q, Xu G Q, et al. Current status and challenges in corrosion and protection strategies for sintered NdFeB magnets[J]. Acta Metall. Sin., 2021, 57: 171
doi: 10.11900/0412.1961.2020.00308
吴玉程, 高志强, 徐光青 等. 烧结NdFeB永磁材料腐蚀与防护的研究现状及挑战[J]. 金属学报, 2021, 57: 171
doi: 10.11900/0412.1961.2020.00308
5 Liu Z W, He J Y, Zhou Q, et al. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets[J]. J. Mater. Sci. Technol., 2022, 98: 51
doi: 10.1016/j.jmst.2021.05.012
6 Cui J, Kramer M, Zhou L, et al. Current progress and future challenges in rare-earth-free permanent magnets[J]. Acta Mater., 2018, 158: 118
doi: 10.1016/j.actamat.2018.07.049
7 Shanghai Metals Market. Pricing of rare earth metals[EB/OL]. https://www.metal.com/Rare-Earth-Metals, 2023. 03.01
8 Yamamoto H, Matsuura Y, Fujimura S, et al. Magnetocrystalline anisotropy of R2Fe14B tetragonal compounds[J]. Appl. Phys. Lett., 1984, 45: 1141
doi: 10.1063/1.95015
9 Wang H, Lamichhane T N, Paranthaman M P. Review of additive manufacturing of permanent magnets for electrical machines: A prospective on wind turbine[J]. Mater. Today Phys., 2022, 24: 100675
10 Lei W K, Zeng Q W, Hu X J, et al. Research status and prospect of high abundant rare earth of permanent magnetic materials[J]. Nonferrous Met. Sci. Eng., 2017, 8(5): 1
雷伟凯, 曾庆文, 胡贤君 等. 高丰度稀土永磁材料的研究现状与展望[J]. 有色金属科学与工程, 2017, 8(5): 1
11 ExplorerMaterials. https://materialsproject.org/materials[EB/OL], 2023. 02.23
12 Coey J M D. Permanent magnets: Plugging the gap[J]. Scr. Mater., 2012, 67: 524
doi: 10.1016/j.scriptamat.2012.04.036
13 Kirchmayr H R. Permanent magnets and hard magnetic materials[J]. J. Phys., 1996, 29D: 2763
14 Hirosawa S, Matsuura Y, Yamamoto H, et al. Magnetization and magnetic anisotropy of RE2Fe14B measured on single crystals[J]. J. Appl. Phys., 1986, 59: 873
doi: 10.1063/1.336611
15 Jin J Y, Zhang Y J, Bai G H, et al. Manipulating Ce valence in RE2Fe14B tetragonal compounds by La-Ce Co-doping: Resultant crystallographic and magnetic anomaly[J]. Sci. Rep., 2016, 6: 30194
doi: 10.1038/srep30194 pmid: 27457408
16 Tang X, Sepehri-Amin H, Ohkubo T, et al. Coercivity enhancement of hot-deformed Ce-Fe-B magnets by grain boundary infiltration of Nd-Cu eutectic alloy[J]. Acta Mater., 2018, 144: 884
doi: 10.1016/j.actamat.2017.10.071
17 Zhao L Z, Guo W T, Zhang Z Y, et al. Structure, magnetic properties and Mössbauer study of melt-spun nanocrystalline Ce-rich ternary Ce-Fe-B alloy[J]. J. Alloys Compd., 2017, 715: 60
doi: 10.1016/j.jallcom.2017.04.320
18 Zhao L Z, Zhang X F, Yan M, et al. 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets[J]. Chin. Phys., 2021, 30B: 013302
19 Zhang Z Y, Zhao L Z, Zhong X C, et al. Phase precipitation behavior of melt-spun ternary Ce2Fe14B alloy during rapid quenching and heat treatment[J]. J. Magn. Magn. Mater., 2017, 441: 429
doi: 10.1016/j.jmmm.2017.06.028
20 Yan C J, Guo S, Chen R J, et al. Phase constitution and microstructure of Ce-Fe-B strip-casting alloy[J]. Chin. Phys., 2014, 23B: 107501
21 Grigoras M, Lostun M, Stoian G, et al. Microstructure and magnetic properties of Ce10+ x Fe84- x B6 nanocrystalline ribbons versus preparation conditions[J]. J. Magn. Magn. Mater., 2017, 432: 119
doi: 10.1016/j.jmmm.2017.01.062
22 Herbst J F, Meyer M S, Pinkerton F E. Magnetic hardening of Ce2Fe14B[J]. J. Appl. Phys., 2012, 111: 07A718
23 Tan X H, Li H Y, Xu H, et al. A cost-effective approach to optimizing microstructure and magnetic properties in Ce17Fe78B6 alloys[J]. Materials, 2017, 10: 869
doi: 10.3390/ma10080869
24 Sagawa M, Fujimura S, Yamamoto H, et al. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds[J]. IEEE Trans. Magn., 1984, 20: 1584
doi: 10.1109/TMAG.1984.1063214
25 Hadjipanayis G C, Tao Y F, Gudimetta K. Formation of Fe14La2B phase in as-cast and melt-spun samples[J]. Appl. Phys. Lett., 1985, 47: 757
doi: 10.1063/1.96029
26 Stadelmaier H H, Elmasry N A, Cheng S. Cobalt-free and samarium-free permanent magnet materials based on an iron-rare earth boride[J]. Mater. Lett., 1983, 2: 169
doi: 10.1016/0167-577X(83)90062-9
27 Wei Q, Lu Z, Yao Q R, et al. Vertical section phase diagrams of La-Fe-B ternary system[J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 1748
doi: 10.1016/S1003-6326(21)65613-3
28 Liao X F, Zhang J S, Yu H Y, et al. Understanding the phase structure, magnetic properties and anti-corrosion behavior of melt-spun (La,Y)2Fe14B alloys[J]. J. Magn. Magn. Mater., 2019, 489: 165444
doi: 10.1016/j.jmmm.2019.165444
29 Zhang Z Y, Zhao L Z, Zhang J S, et al. Phase precipitation behavior of rapidly quenched ternary La-Fe-B alloy and the effects of Nd substitution[J]. Mater. Res. Express, 2017, 4: 086503
30 Tang W Z, Zhou S Z, Wang R. Preparation and microstructure of La-containing R-Fe-B permanent magnets[J]. J. Appl. Phys., 1989, 65: 3142
doi: 10.1063/1.342711
31 Wei Q. Study on the phase equlibria of La-Fe-B system and crystal structure and magnetic properties of compound[D]. Guilin: Guilin University of Electronic Technology, 2020
韦 奇. La-Fe-B体系相平衡及化合物晶体结构、性能研究[D]. 桂林: 桂林电子科技大学, 2020
32 Li Z, Liu W Q, Zha S S, et al. Effects of lanthanum substitution on microstructures and intrinsic magnetic properties of Nd-Fe-B alloy[J]. J. Rare Earths, 2015, 33: 961
doi: 10.1016/S1002-0721(14)60512-3
33 Hanaki A, Nishio T, Iwama Y. Magnetic properties of Y-Fe-B system alloys[J]. IEEE Transl. J. Magn. Japan, 1985, 1: 1004
34 Yan A R, Jia Z, Cao S, et al. Research progress and prospect of high abundance rare earth permanent magnet materials[J]. J. Chin. Soc. Rare Earths, 2023, 41: 79
闫阿儒, 贾 智, 曹 帅 等. 高丰度稀土永磁材料的研究进展与展望[J]. 中国稀土学报, 2023, 41: 79
35 Liu Y T, Fan Y W, Gleb M, et al. Fundamental properties of melt-spun stoichiometric Y2Fe14B alloy and the advantages of Nd substitution[J]. J. Magn. Magn. Mater., 2021, 529: 167898
doi: 10.1016/j.jmmm.2021.167898
36 Sun L, Li K S, Li H W, et al. Hard magnetic properties of melt-spun nanocomposite Y16Fe78B6 ribbons[J]. Rare Met., 2023, 42: 602
doi: 10.1007/s12598-016-0750-3
37 Liu Z W, Qian D Y, Zeng D C. Reducing Dy content by Y substitution in nanocomposite ndfeb alloys with enhanced magnetic properties and thermal stability[J]. IEEE Trans. Magn., 2012, 48: 2797
doi: 10.1109/TMAG.2012.2202217
38 Liao X F, Zhang J S, Yu H Y, et al. Maximizing the hard magnetic properties of melt-spun Ce-La-Fe-B alloys[J]. J. Mater. Sci., 2019, 54: 7288
doi: 10.1007/s10853-019-03387-x
39 Soeda H, Yanagida M, Yamasaki J, et al. Hard magnetic properties of rapidly quenched (La, Ce)-Fe-B ribbons[J]. IEEE Transl. J. Magn. Japan, 1985, 1: 1006
40 Liao X F, Zhao L Z, Zhang J S, et al. Clarifying the basic phase structure and magnetic behavior of directly quenched (Ce, La)2Fe14B alloys with various Ce/La ratios[J]. Curr. Appl. Phys., 2019, 19: 733
doi: 10.1016/j.cap.2019.04.002
41 He J Y, Cao J L, Yu Z G, et al. Grain boundary diffusion sources and their coating methods for Nd-Fe-B permanent magnets[J]. Metals, 2021, 11: 1434
doi: 10.3390/met11091434
42 Liao X F, Zhang J S, He J Y, et al. Development of cost-effective nanocrystalline multi-component (Ce, La, Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd[J]. J. Mater. Sci. Technol., 2021, 76: 215
doi: 10.1016/j.jmst.2020.11.027
43 Zhou Q Y, Liu Z, Guo S, et al. Magnetic properties and microstructure of melt-spun Ce-Fe-B magnets[J]. IEEE Trans. Magn., 2015, 51: 2104304
44 Rehman S U, Jiang Q Z, Liu K, et al. Phase constituents, magnetic properties, intergranular exchange interactions and transition temperatures of Ge-doped CeFeB alloys[J]. J. Phys. Chem. Solids, 2019, 132: 182
doi: 10.1016/j.jpcs.2019.04.033
45 Jiang Q Z, Zhong M L, Lei W K, et al. Effect of Ga addition on the valence state of Ce and magnetic properties of melt-spun Ce17Fe78 - x B6Ga x (x = 0-1.0) ribbons[J]. AIP Adv., 2017, 7: 085013
46 Liao X F, Zhang J S, Yu H Y, et al. Exceptional elevated temperature behavior of nanocrystalline stoichiometric Y2Fe14B alloys with La or Ce substitutions[J]. J. Mater. Sci., 2019, 54: 14577
doi: 10.1007/s10853-019-03916-8
47 Zhang J S, Liao X F, Zhou Q, et al. Enhanced hard-magnetic properties and thermal stability of nanocrystalline Ce-rich Ce-Fe-B alloys by combining La substitution and Si addition[J]. J. Magn. Magn. Mater., 2022, 552: 169217
doi: 10.1016/j.jmmm.2022.169217
48 Liao X F, Zhang J S, Li W, et al. Performance improvement and element segregation behavior in Y substituted nanocrystalline (La, Ce)-Fe-B permanent magnetic alloys without critical RE elements[J]. J. Alloys Compd., 2020, 834: 155226
doi: 10.1016/j.jallcom.2020.155226
49 Zhang J S, Liao X F, Xu K, et al. Enhancement in hard magnetic properties of nanocrystalline (Ce, Y)-Fe-Si-B alloys due to microstructure evolution caused by chemical heterogeneity[J]. J. Mater. Chem., 2020, 8C: 14855
50 Zhao L Z, Li C L, Hao Z P, et al. Influences of element segregation on the magnetic properties in nanocrystalline Nd-Ce-Fe-B alloys[J]. Mater. Charact., 2019, 148: 208
doi: 10.1016/j.matchar.2018.12.022
51 Jin J Y, Ma T Y, Zhang Y J, et al. Chemically inhomogeneous RE-Fe-B permanent magnets with high figure of merit: Solution to global rare earth criticality[J]. Sci. Rep., 2016, 6: 32200
doi: 10.1038/srep32200 pmid: 27553789
52 Jin J Y. Structure and performance of La/Ce-rich multi-main-phase RE-Fe-B permanent magnets[D]. Hangzhou: Zhejiang University, 2016
金佳莹. 富La/Ce多主相稀土永磁材料的结构和性能研究[D]. 杭州: 浙江大学, 2016
53 Liu X B, Altounian Z, Huang M D, et al. The partitioning of La and Y in Nd-Fe-B magnets: A first-principles study[J]. J. Alloys Compd., 2013, 549: 366
doi: 10.1016/j.jallcom.2012.10.056
54 Fan X D, Ding G F, Chen K, et al. Whole process metallurgical behavior of the high-abundance rare-earth elements LRE (La, Ce and Y) and the magnetic performance of Nd0.75LRE0.25-Fe-B sintered magnets[J]. Acta Mater., 2018, 154: 343
doi: 10.1016/j.actamat.2018.05.046
55 Zhang J S, Zhao L Z, Liao X F, et al. Suppressing the CeFe2 phase formation and improving the coercivity and thermal stability of Ce-Fe-B alloys by Si substitution[J]. Intermetallics, 2019, 107: 75
doi: 10.1016/j.intermet.2019.01.013
56 Zhang J S, Li W, Liao X F, et al. Improving the hard magnetic properties by intragrain pinning for Ta doped nanocrystalline Ce-Fe-B alloys[J]. J. Mater. Sci. Technol., 2019, 35: 1877
doi: 10.1016/j.jmst.2019.05.007
57 Li Z B, Zhang M, Shen B G, et al. Variations of phase constitution and magnetic properties with Ce content in Ce-Fe-B permanent magnets[J]. Mater. Lett., 2016, 172: 102
doi: 10.1016/j.matlet.2016.02.149
58 Ni B J, Xu H, Tan X H, et al. Study on magnetic properties of Ce17Fe78 - x Zr x B6 (x = 0-2.0) alloys[J]. J. Magn. Magn. Mater., 2016, 401: 784
doi: 10.1016/j.jmmm.2015.10.110
59 Skoug E J, Meyer M S, Pinkerton F E, et al. Crystal structure and magnetic properties of Ce2Fe14 - x Co x B alloys[J]. J. Alloys Compd., 2013, 574: 552
doi: 10.1016/j.jallcom.2013.05.101
60 Xu K S, Li H W, Luo Y, et al. Experimental and computational study on the phase formation and magnetic properties of Ce-La-Fe-B alloys[J]. J. Magn. Magn. Mater., 2018, 461: 100
doi: 10.1016/j.jmmm.2018.04.058
61 Liao X F, Zhao L Z, Zhang J S, et al. Enhanced formation of 2:14:1 phase in La-based rare earth-iron-boron permanent magnetic alloys by Nd substitution[J]. J. Magn. Magn. Mater., 2018, 464: 31
doi: 10.1016/j.jmmm.2018.05.041
62 Chen Z M, Wu Y Q, Kramer M J, et al. A study on the role of Nb in melt-spun nanocrystalline Nd-Fe-B magnets[J]. J. Magn. Magn. Mater., 2004, 268: 105
doi: 10.1016/S0304-8853(03)00481-5
63 Li R, Shang R X, Xiong J F, et al. Magnetic properties of (misch metal, Nd)-Fe-B melt-spun magnets[J]. AIP Adv., 2017, 7: 056207
64 Brown D N, Lau D, Chen Z. Substitution of Nd with other rare earth elements in melt spun Nd2Fe14B magnets[J]. AIP Adv., 2016, 6: 056019
65 Wu Q, Zhang P Y, Ge H L, et al. Magnetic microstructures and corrosion behaviors of Nd-Fe-B-Ti-C alloy by Ga doping[J]. J. Magn., 2013, 18: 240
doi: 10.4283/JMAG.2013.18.3.240
66 Nezakat M, Gholamipour R, Amadeh A, et al. Corrosion behavior of Nd9.4Pr0.6Febal.Co6B6Ga0.5Ti x C x (x = 0, 1.5, 3, 6) nanocomposites annealed melt-spun ribbons[J]. J. Magn. Magn. Mater., 2009, 321: 3391
doi: 10.1016/j.jmmm.2009.06.053
67 Li W, Li H L, Zhu S J, et al. Simultaneously improved corrosion resistance and magnetic properties of α-Fe/Nd2Fe14B type nanocomposite magnets by interfacial modification[J]. J. Alloys Compd., 2018, 762: 1
doi: 10.1016/j.jallcom.2018.05.137
68 Jin J Y, Ma T Y, Yan M, et al. Crucial role of the REFe2 intergranular phase on corrosion resistance of Nd-La-Ce-Fe-B sintered magnets[J]. J. Alloys Compd., 2018, 735: 2225
doi: 10.1016/j.jallcom.2017.11.372
69 Wu Y R, Ni J J, Ma T Y, et al. Corrosion resistance of Nd-Fe-B sintered magnets with intergranular addition of Cu60Zn40 powders[J]. Physica, 2010, 405B: 3303
70 Cui X G, Yan M, Ma T Y, et al. Effects of Cu nanopowders addition on magnetic properties and corrosion resistance of sintered Nd-Fe-B magnets[J]. Physica, 2008, 403B: 4182
71 Alam A, Johnson D D. Mixed valency and site-preference chemistry for cerium and its compounds: A predictive density-functional theory study[J]. Phys. Rev., 2014, 89B: 235126
72 Zhou C Q, Pan M X, Wu Q, et al. Improvement of magnetic properties for Ti doped Ce-Fe-B alloys: Effectively inhibiting CeFe2 phase formation[J]. J. Magn. Magn. Mater., 2020, 502: 166564
doi: 10.1016/j.jmmm.2020.166564
73 Zhang Y J, Ma T Y, Jin J Y, et al. Effects of REFe2 on microstructure and magnetic properties of Nd-Ce-Fe-B sintered magnets[J]. Acta Mater., 2017, 128: 22
doi: 10.1016/j.actamat.2017.02.002
74 Zhou B, Li W, Wen L, et al. Suppressing laves phase and overcoming magnetic properties tradeoff in nanostructured (Ce, La, Y)-Fe-B alloys via Ge substitution[J]. Appl. Phys. Lett., 2023, 123: 051908
75 Jiang Q Z, He L K, Rehman S U, et al. Permanent magnetic properties of rapidly quenched Ce17Fe78 - x B6 Mx (M = Cu, Al, Ga; x = 0-1.0) alloys[J]. Rare Met. Mater. Eng., 2019, 48: 3686
江庆政, 何伦可, Rehman S U 等. Ce17Fe78 - x B6 Mx (M = Cu, Al, Ga; x=0~1.0)快淬合金永磁性能[J]. 稀有金属材料与工程, 2019, 48: 3686
76 Tao Y M, Jin J Y, Zhao L Z, et al. Cu-mediated grain boundary engineering in Nd-Ce-Fe-B nanostructured permanent magnets[J]. Mater. Today Nano, 2022, 19: 100230
77 Siva Kumar M B, Prabhu D, Sadhasivam M, et al. Enhancing the coercivity of Nd-Cu-diffused Nd-Fe-B permanent magnets by Nb-assisted grain boundary pinning[J]. Mater. Res. Lett., 2022, 10: 780
doi: 10.1080/21663831.2022.2104139
78 Jiang Q Z, Zhong M L, Quan Q C, et al. Striking effect of Hf addition on magnetic properties and thermal stability of Nd13Fe81 - x B6-Hf x (x = 0-1.0) alloys[J]. J. Alloys Compd., 2016, 688: 363
doi: 10.1016/j.jallcom.2016.07.199
79 Jiang Q Z. Fabrication, microstructure and propertry regulation of nanocrystalline Ce-Fe-B based magnets[D]. Ganzhou: Jiangxi University of Science and Technology, 2018
江庆政. 纳米晶Ce-Fe-B基磁体的制备、结构和性能调控[D]. 赣州: 江西理工大学, 2018
80 Zha L, Kim C, Yun C, et al. A novel strategy for the fabrication of high-performance nanostructured Ce-Fe-B magnetic materials via electron-beam exposure[J]. Sci. China Mater., 2021, 64: 2519
doi: 10.1007/s40843-020-1650-2
81 Cui W B, Zhang T B, Zhou X Q, et al. Enhanced coercivity and grain boundary chemistry in diffusion-processed Ce13Fe79B8 ribbons[J]. Mater. Lett., 2017, 191: 210
doi: 10.1016/j.matlet.2016.12.060
82 Chen K, Guo S, Fan X D, et al. Coercivity enhancement of Ce-Fe-B sintered magnets by low-melting point intergranular additive[J]. J. Rare Earths, 2017, 35: 158
doi: 10.1016/S1002-0721(17)60894-9
83 Zhang Z Y. The fundamental properties of rapidly quenched Ce/La-Fe-B alloys and the preparation of Nd-Fe-B based permanent magnets[D]. Guangzhou: South China University of Technology, 2017
张振扬. 快淬铈/镧-铁-硼合金的基本特性及钕-铁-硼基永磁体的制备[D]. 广州: 华南理工大学, 2017
84 Jiang Q Z, He L K, Rehman S U, et al. Microstructure characterization and magnetic characteristics of Ce-Fe-B based spark plasma sintered magnets[J]. IEEE Trans. Magn., 2019, 55: 2101806
85 Lu Q M, Niu J, Liu W Q, et al. Enhanced magnetic properties of spark plasma sintered (La/Ce)-Fe-B magnets[J]. IEEE Trans. Magn., 2017, 53: 2100603
86 Fan W B, Zhang J S, Liao X F, et al. Preparation of hot worked dual-main phase Nd-Ce-Fe-B magnets and properties modification by grain boundary diffusion[J]. J. Alloys Compd., 2022, 922: 166021
doi: 10.1016/j.jallcom.2022.166021
87 Hou Y H, Nie Z H, Yao Y F, et al. Effects of Ce content on microstructure evolution and magnetic properties for hot deformed Ce-Fe-B magnets[J]. Intermetallics, 2022, 148: 107644
doi: 10.1016/j.intermet.2022.107644
88 Wang R Q, Shen X, Liu Y, et al. Effects of Ga addition on the formability of main phase and microstructure of hot-deformed Ce-Fe-B magnets[J]. IEEE Trans. Magn., 2016, 52: 2101806
89 Liao X F, Zhao L Z, Zhang J S, et al. Textured (Ce, La, Y)-Fe-B permanent magnets by hot deformation[J]. J. Mater. Res. Technol., 2022, 17: 1459
doi: 10.1016/j.jmrt.2022.01.106
90 Huang Y L, Li Z H, Ge X J, et al. Microstructure, magnetic anisotropy, plastic deformation, and magnetic properties: The role of Pr-Cu in hot deformed CeFeB magnets[J]. J. Alloys Compd., 2019, 797: 1133
doi: 10.1016/j.jallcom.2019.05.027
91 Ito M, Yano M, Sakuma N, et al. Coercivity enhancement in Ce-Fe-B based magnets by core-shell grain structuring[J]. AIP Adv., 2016, 6: 056029
92 Wang R Q, Liu Y, Li J, et al. Fabrication of anisotropic NdCeFeB hybrid magnets by hot-deformation: Microstructures and magnetic properties[J]. Mater. Res. Express, 2017, 4: 046104
93 Jiang Q Z, He L K, Lei W K, et al. Microstructure and magnetic properties of multi-main-phase Ce-Fe-B spark plasma sintered magnets by dual alloy method[J]. J. Magn. Magn. Mater., 2019, 475: 746
doi: 10.1016/j.jmmm.2018.12.041
94 Chen B, Tang X, Yin W Z, et al. Coercivity enhancement of hot-deformed (Ce, Nd, Pr)-Fe-B magnets by grain boundary diffusion of Pr-Cu alloy[J]. J. Magn. Magn. Mater., 2020, 497: 166002
doi: 10.1016/j.jmmm.2019.166002
95 Song T T, Li X, Tang X, et al. Effect of Nb doping on microstructure and magnetic properties of hot-deformed Nd-Fe-B magnets with Nd-Cu eutectic diffusion[J]. J. Mater. Sci. Technol., 2022, 122: 121
doi: 10.1016/j.jmst.2021.12.073
96 Huang Y L, Nie H X, Liu Y Y, et al. Production of anisotropic hot deformed Nd-Fe-B magnets with the addition of Pr-Cu-Al alloy based on nanocomposite ribbon[J]. J. Alloys Compd., 2022, 892: 162072
doi: 10.1016/j.jallcom.2021.162072
97 Horikawa T, Yamazaki M, Matsuura M, et al. Recent progress in the development of high-performance bonded magnets using rare earth-Fe compounds[J]. Sci. Technol. Adv. Mater., 2021, 22: 729
doi: 10.1080/14686996.2021.1944780
98 Cao J, Huang Y L, Hou Y H, et al. Microstructure and magnetic properties of MnBi alloys with high coercivity and significant anisotropy prepared by surfactant assisted ball milling[J]. J. Magn. Magn. Mater., 2019, 473: 505
doi: 10.1016/j.jmmm.2018.10.052
99 Yin X G, Sui Y, Yang Q Q, et al. Preparation and magnetic properties of anisotropic Nd2Fe14B/Sm2Co17 hybrid-bonded magnets[J]. J. Rare Earths, 2019, 37: 1047
doi: 10.1016/j.jre.2019.03.008
100 Ma B, Sun A Z, Gao X X, et al. Preparation of anisotropic bonded NdFeB/SmFeN hybrid magnets by mixing two different size powders[J]. J. Magn. Magn. Mater., 2018, 457: 70
doi: 10.1016/j.jmmm.2017.11.097
101 Fukunaga H, Murata H, Yanai T, et al. Prediction method of flux loss in anisotropic NdFeB/SmFeN hybrid magnets[J]. J. Appl. Phys., 2010, 107: 09A736
102 Zhang D T, Wang P F, Yue M, et al. High-temperature magnetic properties of anisotropic MnBi/NdFeB hybrid bonded magnets[J]. Rare Met., 2016, 35: 471
doi: 10.1007/s12598-015-0668-1
103 Huang W S, Liao X F, He J Y, et al. Development of bonded (La, Ce, Y)-Fe-B permanent magnets with higher performance/cost ratio than Nd-Fe-B and (Nd, La, Ce)-Fe-B magnets[J]. J. Magn. Magn. Mater., 2022, 559: 169554
doi: 10.1016/j.jmmm.2022.169554
104 Peng B X, Jin J Y, Liu Y S, et al. Towards peculiar corrosion behavior of multi-main-phase Nd-Ce-Y-Fe-B permanent material with heterogeneous microstructure[J]. Corros. Sci., 2020, 177: 108972
doi: 10.1016/j.corsci.2020.108972
105 Zhou B, Huang W S, Fan W B, et al. Development of flexible rare earth-Fe-B rubber magnets toward efficient utilization of Ce, La, and Y elements[J]. Adv. Eng. Mater., 2023, 25: 2301329
doi: 10.1002/adem.v25.23
106 Li S N, Li B Q, Gong L X, et al. Enhanced mechanical properties of polyacrylamide/chitosan hydrogels by tuning the molecular structure of hyperbranched polysiloxane[J]. Mater. Des., 2019, 162: 162
doi: 10.1016/j.matdes.2018.11.045
[1] WANG Zheng, WANG Zhenyu, WANG Aiying, YANG Wei, KE Peiling. Influence of Micro-Arc Oxidation Time on Structure and Properties of MAO/Cr Composite Coatings[J]. 金属学报, 2024, 60(5): 691-698.
[2] YANG Weiyang, LI Xianhao, ZHAO Pengfei, YU Haibin, ZHAO Songshan, LUO Haiwen. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. 金属学报, 2024, 60(5): 605-615.
[3] ZENG Li, WANG Guilan, ZHANG Haiou, ZHAI Wenzheng, ZHANG Yong, ZHANG Mingbo. Microstructure and Mechanical Properties of GH4169D Superalloy Fabricated by Hybrid Arc and Micro-Rolling Additive Manufacturing[J]. 金属学报, 2024, 60(5): 681-690.
[4] LI Kangjie, SUN Zeyu, HE Bei, TIAN Xiangjun. Microstructure and Hardness of Al-Cu-Li Alloy Fabricated by Arc Additive Manufacturing Based on In Situ Metallurgy of Molten Pool[J]. 金属学报, 2024, 60(5): 661-669.
[5] LI Tianrui, XU Yuqian, WU Wenping, GAN Wenxuan, YANG Yong, LIU Guohuai, WANG Zhaodong. Effects of V and B on the Microstructure Evolution and Deformation Mechanisms of Ti-44Al-5Nb-1Mo Alloys[J]. 金属学报, 2024, 60(5): 650-660.
[6] XIONG Yi, LUAN Zewei, MA Yunfei, LI Yong, ZHA Xiaoqin. Effect of Surface Nanocrystallization Induced by Supersonic Fine Particles Bombardment on Corrosion Fatigue Behavior of 300M Steel[J]. 金属学报, 2024, 60(5): 627-638.
[7] WANG Jinxin, YAO Meiyi, LIN Yuchen, CHEN Liutao, GAO Changyuan, XU Shitong, HU Lijuan, XIE Yaoping, ZHOU Bangxin. High Temperature Steam Oxidation Behavior of Zr-1Nb- xFe Alloy Under Simulated LOCA Condition[J]. 金属学报, 2024, 60(5): 670-680.
[8] CAI Jie, GAO Jie, HUA Yinqun, YE Yunxia, GUAN Qingfeng, ZHANG Xiaofeng. Effect of High-Current Pulsed Electron Beam Irradiation on Microstructure and Properties of MCrAlY Coating Prepared by Low-Pressure Plasma Spraying[J]. 金属学报, 2024, 60(4): 495-508.
[9] TIAN Teng, ZHA Min, YIN Haoliang, HUA Zhenming, JIA Hailong, WANG Huiyuan. Enhanced Mechanical Properties and Thermal Stability Mechanism of a High Solid Solution Al-Mg Alloy Processed by Cryogenic High-Reduction Hard-Plate Rolling[J]. 金属学报, 2024, 60(4): 473-484.
[10] FAN Lihua, LI Jinlin, SUN Jiudong, LV Mengtian, WANG Qing, DONG Chuang. Effect of Cr/Mo/W on the Thermal Stability ofγ/γ′Coherent Microstructure in Ni-Based Superalloys[J]. 金属学报, 2024, 60(4): 453-463.
[11] HUANG Jiansong, PEI Wen, XU Shitong, BAI Yong, YAO Meiyi, HU Lijuan, XIE Yaoping, ZHOU Bangxin. Degradation Mechanism on Corrosion Resistance of High Nb-Containing Zirconium Alloys in Oxygen-Containing Steam[J]. 金属学报, 2024, 60(4): 509-521.
[12] YANG Ping, MA Dandan, GU Chen, GU Xinfu. Influence of Initial Microstructure and Cold Rolling Reduction on Transformation Texture and Magnetic Properties of Industrial Low-Grade Electrical Steel[J]. 金属学报, 2024, 60(3): 377-387.
[13] SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. 金属学报, 2024, 60(3): 273-286.
[14] NI Mingjie, LIU Renci, ZHOU Haohao, YANG Chao, GE Shuyu, LIU Dong, SHI Fengling, CUI Yuyou, YANG Rui. Influence of Grinding Depth on the Surface Integrity and Fatigue Property of γ-TiAl Alloy[J]. 金属学报, 2024, 60(2): 261-272.
[15] ZHANG Chao, XIONG Zhiping, YANG Dezhen, CHENG Xingwang. Effect of Mn Heterogeneous Distribution on Microstructures and Mechanical Properties of Quenching and Partitioning Steels[J]. 金属学报, 2024, 60(1): 69-79.
No Suggested Reading articles found!