|
|
Research Status and Future Development of (Ce, La, Y)-Fe-B Permanent Magnets Based on Full High-Abundance Rare Earth Elements |
LIU Zhongwu1( ), ZHOU Bang1, LIAO Xuefeng1,2, HE Jiayi1,3 |
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China 2 Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China 3 School of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
|
Cite this article:
LIU Zhongwu, ZHOU Bang, LIAO Xuefeng, HE Jiayi. Research Status and Future Development of (Ce, La, Y)-Fe-B Permanent Magnets Based on Full High-Abundance Rare Earth Elements. Acta Metall Sin, 2024, 60(5): 585-604.
|
Abstract The surging demand for Nd-Fe-B-based rare earth (RE) permanent magnets has led to a sharp increase in the consumption of critical RE elements, such as Nd, Pr, Dy, and Tb. As a result, the high cost of these elements has become a major issue. Judging from the perspective of economy and resource availablity, the overstock of abundant and inexpensive RE resources, including La, Ce, and Y, offers a new opportunity to develop cost-effective permanent magnets containing no critical RE elements. RE-Fe-B magnets based on full high-abundance REs, i.e., (Ce, La, Y)-Fe-B type magnets, are expected to serve as an alternative to fill the performance gap between hard ferrites and bonded Nd-Fe-B magnets. This approach can not only meet the diversified demand for permanent magnet materials in the middle- and low-end markets, but also contribute to a balanced use of RE resources. At present, however, the recognition and understanding of Ce-, La-, and Y-based RE-Fe-B permanent magnets still require further research, and the performance of these magnets in the laboratory is quite low, which makes practical applications difficult. Based on the latest domestic and overseas developments and the research results obtaned by the authors' research group, this review summarizes the research progress on Ce-, La-, and Y-based RE-Fe-B permanent magnetic alloys and associated densified magnets. The analysis highlights the magnetic properties and metallurgical behavior of rapidly quenched RE-Fe-B alloys, alloying composition design, and element interactions in multicomponent, rapidly quenched (Ce, La, Y)-Fe-B alloys. Moreover, the relationship between the preparation process, microstructure, and magnetic properties of bulk RE-Fe-B densified magnets is discussed. Finally, the improvement and future development trends of full high-abundance RE permanent magnets are also explored.
|
Received: 23 March 2023
|
|
Fund: National Natural Science Foundation of China(U21A2052);National Natural Science Foundation of China(52071143);China Postdoctoral Science Foundation(2022M720845) |
Corresponding Authors:
LIU Zhongwu, professor, Tel: (020)22236906, E-mail: zwliu@scut.edu.cn
|
1 |
Zhao L Z, He J Y, Li W, et al. Understanding the role of element grain boundary diffusion mechanism in Nd-Fe-B magnets[J]. Adv. Funct. Mater., 2022, 32: 2109529
doi: 10.1002/adfm.v32.8
|
2 |
Liu Z W, He J Y. Several issues on the development of grain boundary diffusion process for Nd-Fe-B permanent magnets[J]. Acta Metall. Sin., 2021, 57: 1155
|
|
刘仲武, 何家毅. 钕铁硼永磁晶界扩散技术和理论发展的几个问题[J]. 金属学报, 2021, 57: 1155
doi: 10.11900/0412.1961.2020.00438
|
3 |
Coey J M D. Perspective and prospects for rare earth permanent magnets[J]. Engineering, 2020, 6: 119
doi: 10.1016/j.eng.2018.11.034
|
4 |
Wu Y C, Gao Z Q, Xu G Q, et al. Current status and challenges in corrosion and protection strategies for sintered NdFeB magnets[J]. Acta Metall. Sin., 2021, 57: 171
doi: 10.11900/0412.1961.2020.00308
|
|
吴玉程, 高志强, 徐光青 等. 烧结NdFeB永磁材料腐蚀与防护的研究现状及挑战[J]. 金属学报, 2021, 57: 171
doi: 10.11900/0412.1961.2020.00308
|
5 |
Liu Z W, He J Y, Zhou Q, et al. Development of non-rare earth grain boundary modification techniques for Nd-Fe-B permanent magnets[J]. J. Mater. Sci. Technol., 2022, 98: 51
doi: 10.1016/j.jmst.2021.05.012
|
6 |
Cui J, Kramer M, Zhou L, et al. Current progress and future challenges in rare-earth-free permanent magnets[J]. Acta Mater., 2018, 158: 118
doi: 10.1016/j.actamat.2018.07.049
|
7 |
Shanghai Metals Market. Pricing of rare earth metals[EB/OL]. https://www.metal.com/Rare-Earth-Metals, 2023. 03.01
|
8 |
Yamamoto H, Matsuura Y, Fujimura S, et al. Magnetocrystalline anisotropy of R2Fe14B tetragonal compounds[J]. Appl. Phys. Lett., 1984, 45: 1141
doi: 10.1063/1.95015
|
9 |
Wang H, Lamichhane T N, Paranthaman M P. Review of additive manufacturing of permanent magnets for electrical machines: A prospective on wind turbine[J]. Mater. Today Phys., 2022, 24: 100675
|
10 |
Lei W K, Zeng Q W, Hu X J, et al. Research status and prospect of high abundant rare earth of permanent magnetic materials[J]. Nonferrous Met. Sci. Eng., 2017, 8(5): 1
|
|
雷伟凯, 曾庆文, 胡贤君 等. 高丰度稀土永磁材料的研究现状与展望[J]. 有色金属科学与工程, 2017, 8(5): 1
|
11 |
ExplorerMaterials. https://materialsproject.org/materials[EB/OL], 2023. 02.23
|
12 |
Coey J M D. Permanent magnets: Plugging the gap[J]. Scr. Mater., 2012, 67: 524
doi: 10.1016/j.scriptamat.2012.04.036
|
13 |
Kirchmayr H R. Permanent magnets and hard magnetic materials[J]. J. Phys., 1996, 29D: 2763
|
14 |
Hirosawa S, Matsuura Y, Yamamoto H, et al. Magnetization and magnetic anisotropy of RE2Fe14B measured on single crystals[J]. J. Appl. Phys., 1986, 59: 873
doi: 10.1063/1.336611
|
15 |
Jin J Y, Zhang Y J, Bai G H, et al. Manipulating Ce valence in RE2Fe14B tetragonal compounds by La-Ce Co-doping: Resultant crystallographic and magnetic anomaly[J]. Sci. Rep., 2016, 6: 30194
doi: 10.1038/srep30194
pmid: 27457408
|
16 |
Tang X, Sepehri-Amin H, Ohkubo T, et al. Coercivity enhancement of hot-deformed Ce-Fe-B magnets by grain boundary infiltration of Nd-Cu eutectic alloy[J]. Acta Mater., 2018, 144: 884
doi: 10.1016/j.actamat.2017.10.071
|
17 |
Zhao L Z, Guo W T, Zhang Z Y, et al. Structure, magnetic properties and Mössbauer study of melt-spun nanocrystalline Ce-rich ternary Ce-Fe-B alloy[J]. J. Alloys Compd., 2017, 715: 60
doi: 10.1016/j.jallcom.2017.04.320
|
18 |
Zhao L Z, Zhang X F, Yan M, et al. 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets[J]. Chin. Phys., 2021, 30B: 013302
|
19 |
Zhang Z Y, Zhao L Z, Zhong X C, et al. Phase precipitation behavior of melt-spun ternary Ce2Fe14B alloy during rapid quenching and heat treatment[J]. J. Magn. Magn. Mater., 2017, 441: 429
doi: 10.1016/j.jmmm.2017.06.028
|
20 |
Yan C J, Guo S, Chen R J, et al. Phase constitution and microstructure of Ce-Fe-B strip-casting alloy[J]. Chin. Phys., 2014, 23B: 107501
|
21 |
Grigoras M, Lostun M, Stoian G, et al. Microstructure and magnetic properties of Ce10+ x Fe84- x B6 nanocrystalline ribbons versus preparation conditions[J]. J. Magn. Magn. Mater., 2017, 432: 119
doi: 10.1016/j.jmmm.2017.01.062
|
22 |
Herbst J F, Meyer M S, Pinkerton F E. Magnetic hardening of Ce2Fe14B[J]. J. Appl. Phys., 2012, 111: 07A718
|
23 |
Tan X H, Li H Y, Xu H, et al. A cost-effective approach to optimizing microstructure and magnetic properties in Ce17Fe78B6 alloys[J]. Materials, 2017, 10: 869
doi: 10.3390/ma10080869
|
24 |
Sagawa M, Fujimura S, Yamamoto H, et al. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds[J]. IEEE Trans. Magn., 1984, 20: 1584
doi: 10.1109/TMAG.1984.1063214
|
25 |
Hadjipanayis G C, Tao Y F, Gudimetta K. Formation of Fe14La2B phase in as-cast and melt-spun samples[J]. Appl. Phys. Lett., 1985, 47: 757
doi: 10.1063/1.96029
|
26 |
Stadelmaier H H, Elmasry N A, Cheng S. Cobalt-free and samarium-free permanent magnet materials based on an iron-rare earth boride[J]. Mater. Lett., 1983, 2: 169
doi: 10.1016/0167-577X(83)90062-9
|
27 |
Wei Q, Lu Z, Yao Q R, et al. Vertical section phase diagrams of La-Fe-B ternary system[J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 1748
doi: 10.1016/S1003-6326(21)65613-3
|
28 |
Liao X F, Zhang J S, Yu H Y, et al. Understanding the phase structure, magnetic properties and anti-corrosion behavior of melt-spun (La,Y)2Fe14B alloys[J]. J. Magn. Magn. Mater., 2019, 489: 165444
doi: 10.1016/j.jmmm.2019.165444
|
29 |
Zhang Z Y, Zhao L Z, Zhang J S, et al. Phase precipitation behavior of rapidly quenched ternary La-Fe-B alloy and the effects of Nd substitution[J]. Mater. Res. Express, 2017, 4: 086503
|
30 |
Tang W Z, Zhou S Z, Wang R. Preparation and microstructure of La-containing R-Fe-B permanent magnets[J]. J. Appl. Phys., 1989, 65: 3142
doi: 10.1063/1.342711
|
31 |
Wei Q. Study on the phase equlibria of La-Fe-B system and crystal structure and magnetic properties of compound[D]. Guilin: Guilin University of Electronic Technology, 2020
|
|
韦 奇. La-Fe-B体系相平衡及化合物晶体结构、性能研究[D]. 桂林: 桂林电子科技大学, 2020
|
32 |
Li Z, Liu W Q, Zha S S, et al. Effects of lanthanum substitution on microstructures and intrinsic magnetic properties of Nd-Fe-B alloy[J]. J. Rare Earths, 2015, 33: 961
doi: 10.1016/S1002-0721(14)60512-3
|
33 |
Hanaki A, Nishio T, Iwama Y. Magnetic properties of Y-Fe-B system alloys[J]. IEEE Transl. J. Magn. Japan, 1985, 1: 1004
|
34 |
Yan A R, Jia Z, Cao S, et al. Research progress and prospect of high abundance rare earth permanent magnet materials[J]. J. Chin. Soc. Rare Earths, 2023, 41: 79
|
|
闫阿儒, 贾 智, 曹 帅 等. 高丰度稀土永磁材料的研究进展与展望[J]. 中国稀土学报, 2023, 41: 79
|
35 |
Liu Y T, Fan Y W, Gleb M, et al. Fundamental properties of melt-spun stoichiometric Y2Fe14B alloy and the advantages of Nd substitution[J]. J. Magn. Magn. Mater., 2021, 529: 167898
doi: 10.1016/j.jmmm.2021.167898
|
36 |
Sun L, Li K S, Li H W, et al. Hard magnetic properties of melt-spun nanocomposite Y16Fe78B6 ribbons[J]. Rare Met., 2023, 42: 602
doi: 10.1007/s12598-016-0750-3
|
37 |
Liu Z W, Qian D Y, Zeng D C. Reducing Dy content by Y substitution in nanocomposite ndfeb alloys with enhanced magnetic properties and thermal stability[J]. IEEE Trans. Magn., 2012, 48: 2797
doi: 10.1109/TMAG.2012.2202217
|
38 |
Liao X F, Zhang J S, Yu H Y, et al. Maximizing the hard magnetic properties of melt-spun Ce-La-Fe-B alloys[J]. J. Mater. Sci., 2019, 54: 7288
doi: 10.1007/s10853-019-03387-x
|
39 |
Soeda H, Yanagida M, Yamasaki J, et al. Hard magnetic properties of rapidly quenched (La, Ce)-Fe-B ribbons[J]. IEEE Transl. J. Magn. Japan, 1985, 1: 1006
|
40 |
Liao X F, Zhao L Z, Zhang J S, et al. Clarifying the basic phase structure and magnetic behavior of directly quenched (Ce, La)2Fe14B alloys with various Ce/La ratios[J]. Curr. Appl. Phys., 2019, 19: 733
doi: 10.1016/j.cap.2019.04.002
|
41 |
He J Y, Cao J L, Yu Z G, et al. Grain boundary diffusion sources and their coating methods for Nd-Fe-B permanent magnets[J]. Metals, 2021, 11: 1434
doi: 10.3390/met11091434
|
42 |
Liao X F, Zhang J S, He J Y, et al. Development of cost-effective nanocrystalline multi-component (Ce, La, Y)-Fe-B permanent magnetic alloys containing no critical rare earth elements of Dy, Tb, Pr and Nd[J]. J. Mater. Sci. Technol., 2021, 76: 215
doi: 10.1016/j.jmst.2020.11.027
|
43 |
Zhou Q Y, Liu Z, Guo S, et al. Magnetic properties and microstructure of melt-spun Ce-Fe-B magnets[J]. IEEE Trans. Magn., 2015, 51: 2104304
|
44 |
Rehman S U, Jiang Q Z, Liu K, et al. Phase constituents, magnetic properties, intergranular exchange interactions and transition temperatures of Ge-doped CeFeB alloys[J]. J. Phys. Chem. Solids, 2019, 132: 182
doi: 10.1016/j.jpcs.2019.04.033
|
45 |
Jiang Q Z, Zhong M L, Lei W K, et al. Effect of Ga addition on the valence state of Ce and magnetic properties of melt-spun Ce17Fe78 - x B6Ga x (x = 0-1.0) ribbons[J]. AIP Adv., 2017, 7: 085013
|
46 |
Liao X F, Zhang J S, Yu H Y, et al. Exceptional elevated temperature behavior of nanocrystalline stoichiometric Y2Fe14B alloys with La or Ce substitutions[J]. J. Mater. Sci., 2019, 54: 14577
doi: 10.1007/s10853-019-03916-8
|
47 |
Zhang J S, Liao X F, Zhou Q, et al. Enhanced hard-magnetic properties and thermal stability of nanocrystalline Ce-rich Ce-Fe-B alloys by combining La substitution and Si addition[J]. J. Magn. Magn. Mater., 2022, 552: 169217
doi: 10.1016/j.jmmm.2022.169217
|
48 |
Liao X F, Zhang J S, Li W, et al. Performance improvement and element segregation behavior in Y substituted nanocrystalline (La, Ce)-Fe-B permanent magnetic alloys without critical RE elements[J]. J. Alloys Compd., 2020, 834: 155226
doi: 10.1016/j.jallcom.2020.155226
|
49 |
Zhang J S, Liao X F, Xu K, et al. Enhancement in hard magnetic properties of nanocrystalline (Ce, Y)-Fe-Si-B alloys due to microstructure evolution caused by chemical heterogeneity[J]. J. Mater. Chem., 2020, 8C: 14855
|
50 |
Zhao L Z, Li C L, Hao Z P, et al. Influences of element segregation on the magnetic properties in nanocrystalline Nd-Ce-Fe-B alloys[J]. Mater. Charact., 2019, 148: 208
doi: 10.1016/j.matchar.2018.12.022
|
51 |
Jin J Y, Ma T Y, Zhang Y J, et al. Chemically inhomogeneous RE-Fe-B permanent magnets with high figure of merit: Solution to global rare earth criticality[J]. Sci. Rep., 2016, 6: 32200
doi: 10.1038/srep32200
pmid: 27553789
|
52 |
Jin J Y. Structure and performance of La/Ce-rich multi-main-phase RE-Fe-B permanent magnets[D]. Hangzhou: Zhejiang University, 2016
|
|
金佳莹. 富La/Ce多主相稀土永磁材料的结构和性能研究[D]. 杭州: 浙江大学, 2016
|
53 |
Liu X B, Altounian Z, Huang M D, et al. The partitioning of La and Y in Nd-Fe-B magnets: A first-principles study[J]. J. Alloys Compd., 2013, 549: 366
doi: 10.1016/j.jallcom.2012.10.056
|
54 |
Fan X D, Ding G F, Chen K, et al. Whole process metallurgical behavior of the high-abundance rare-earth elements LRE (La, Ce and Y) and the magnetic performance of Nd0.75LRE0.25-Fe-B sintered magnets[J]. Acta Mater., 2018, 154: 343
doi: 10.1016/j.actamat.2018.05.046
|
55 |
Zhang J S, Zhao L Z, Liao X F, et al. Suppressing the CeFe2 phase formation and improving the coercivity and thermal stability of Ce-Fe-B alloys by Si substitution[J]. Intermetallics, 2019, 107: 75
doi: 10.1016/j.intermet.2019.01.013
|
56 |
Zhang J S, Li W, Liao X F, et al. Improving the hard magnetic properties by intragrain pinning for Ta doped nanocrystalline Ce-Fe-B alloys[J]. J. Mater. Sci. Technol., 2019, 35: 1877
doi: 10.1016/j.jmst.2019.05.007
|
57 |
Li Z B, Zhang M, Shen B G, et al. Variations of phase constitution and magnetic properties with Ce content in Ce-Fe-B permanent magnets[J]. Mater. Lett., 2016, 172: 102
doi: 10.1016/j.matlet.2016.02.149
|
58 |
Ni B J, Xu H, Tan X H, et al. Study on magnetic properties of Ce17Fe78 - x Zr x B6 (x = 0-2.0) alloys[J]. J. Magn. Magn. Mater., 2016, 401: 784
doi: 10.1016/j.jmmm.2015.10.110
|
59 |
Skoug E J, Meyer M S, Pinkerton F E, et al. Crystal structure and magnetic properties of Ce2Fe14 - x Co x B alloys[J]. J. Alloys Compd., 2013, 574: 552
doi: 10.1016/j.jallcom.2013.05.101
|
60 |
Xu K S, Li H W, Luo Y, et al. Experimental and computational study on the phase formation and magnetic properties of Ce-La-Fe-B alloys[J]. J. Magn. Magn. Mater., 2018, 461: 100
doi: 10.1016/j.jmmm.2018.04.058
|
61 |
Liao X F, Zhao L Z, Zhang J S, et al. Enhanced formation of 2:14:1 phase in La-based rare earth-iron-boron permanent magnetic alloys by Nd substitution[J]. J. Magn. Magn. Mater., 2018, 464: 31
doi: 10.1016/j.jmmm.2018.05.041
|
62 |
Chen Z M, Wu Y Q, Kramer M J, et al. A study on the role of Nb in melt-spun nanocrystalline Nd-Fe-B magnets[J]. J. Magn. Magn. Mater., 2004, 268: 105
doi: 10.1016/S0304-8853(03)00481-5
|
63 |
Li R, Shang R X, Xiong J F, et al. Magnetic properties of (misch metal, Nd)-Fe-B melt-spun magnets[J]. AIP Adv., 2017, 7: 056207
|
64 |
Brown D N, Lau D, Chen Z. Substitution of Nd with other rare earth elements in melt spun Nd2Fe14B magnets[J]. AIP Adv., 2016, 6: 056019
|
65 |
Wu Q, Zhang P Y, Ge H L, et al. Magnetic microstructures and corrosion behaviors of Nd-Fe-B-Ti-C alloy by Ga doping[J]. J. Magn., 2013, 18: 240
doi: 10.4283/JMAG.2013.18.3.240
|
66 |
Nezakat M, Gholamipour R, Amadeh A, et al. Corrosion behavior of Nd9.4Pr0.6Febal.Co6B6Ga0.5Ti x C x (x = 0, 1.5, 3, 6) nanocomposites annealed melt-spun ribbons[J]. J. Magn. Magn. Mater., 2009, 321: 3391
doi: 10.1016/j.jmmm.2009.06.053
|
67 |
Li W, Li H L, Zhu S J, et al. Simultaneously improved corrosion resistance and magnetic properties of α-Fe/Nd2Fe14B type nanocomposite magnets by interfacial modification[J]. J. Alloys Compd., 2018, 762: 1
doi: 10.1016/j.jallcom.2018.05.137
|
68 |
Jin J Y, Ma T Y, Yan M, et al. Crucial role of the REFe2 intergranular phase on corrosion resistance of Nd-La-Ce-Fe-B sintered magnets[J]. J. Alloys Compd., 2018, 735: 2225
doi: 10.1016/j.jallcom.2017.11.372
|
69 |
Wu Y R, Ni J J, Ma T Y, et al. Corrosion resistance of Nd-Fe-B sintered magnets with intergranular addition of Cu60Zn40 powders[J]. Physica, 2010, 405B: 3303
|
70 |
Cui X G, Yan M, Ma T Y, et al. Effects of Cu nanopowders addition on magnetic properties and corrosion resistance of sintered Nd-Fe-B magnets[J]. Physica, 2008, 403B: 4182
|
71 |
Alam A, Johnson D D. Mixed valency and site-preference chemistry for cerium and its compounds: A predictive density-functional theory study[J]. Phys. Rev., 2014, 89B: 235126
|
72 |
Zhou C Q, Pan M X, Wu Q, et al. Improvement of magnetic properties for Ti doped Ce-Fe-B alloys: Effectively inhibiting CeFe2 phase formation[J]. J. Magn. Magn. Mater., 2020, 502: 166564
doi: 10.1016/j.jmmm.2020.166564
|
73 |
Zhang Y J, Ma T Y, Jin J Y, et al. Effects of REFe2 on microstructure and magnetic properties of Nd-Ce-Fe-B sintered magnets[J]. Acta Mater., 2017, 128: 22
doi: 10.1016/j.actamat.2017.02.002
|
74 |
Zhou B, Li W, Wen L, et al. Suppressing laves phase and overcoming magnetic properties tradeoff in nanostructured (Ce, La, Y)-Fe-B alloys via Ge substitution[J]. Appl. Phys. Lett., 2023, 123: 051908
|
75 |
Jiang Q Z, He L K, Rehman S U, et al. Permanent magnetic properties of rapidly quenched Ce17Fe78 - x B6 Mx (M = Cu, Al, Ga; x = 0-1.0) alloys[J]. Rare Met. Mater. Eng., 2019, 48: 3686
|
|
江庆政, 何伦可, Rehman S U 等. Ce17Fe78 - x B6 Mx (M = Cu, Al, Ga; x=0~1.0)快淬合金永磁性能[J]. 稀有金属材料与工程, 2019, 48: 3686
|
76 |
Tao Y M, Jin J Y, Zhao L Z, et al. Cu-mediated grain boundary engineering in Nd-Ce-Fe-B nanostructured permanent magnets[J]. Mater. Today Nano, 2022, 19: 100230
|
77 |
Siva Kumar M B, Prabhu D, Sadhasivam M, et al. Enhancing the coercivity of Nd-Cu-diffused Nd-Fe-B permanent magnets by Nb-assisted grain boundary pinning[J]. Mater. Res. Lett., 2022, 10: 780
doi: 10.1080/21663831.2022.2104139
|
78 |
Jiang Q Z, Zhong M L, Quan Q C, et al. Striking effect of Hf addition on magnetic properties and thermal stability of Nd13Fe81 - x B6-Hf x (x = 0-1.0) alloys[J]. J. Alloys Compd., 2016, 688: 363
doi: 10.1016/j.jallcom.2016.07.199
|
79 |
Jiang Q Z. Fabrication, microstructure and propertry regulation of nanocrystalline Ce-Fe-B based magnets[D]. Ganzhou: Jiangxi University of Science and Technology, 2018
|
|
江庆政. 纳米晶Ce-Fe-B基磁体的制备、结构和性能调控[D]. 赣州: 江西理工大学, 2018
|
80 |
Zha L, Kim C, Yun C, et al. A novel strategy for the fabrication of high-performance nanostructured Ce-Fe-B magnetic materials via electron-beam exposure[J]. Sci. China Mater., 2021, 64: 2519
doi: 10.1007/s40843-020-1650-2
|
81 |
Cui W B, Zhang T B, Zhou X Q, et al. Enhanced coercivity and grain boundary chemistry in diffusion-processed Ce13Fe79B8 ribbons[J]. Mater. Lett., 2017, 191: 210
doi: 10.1016/j.matlet.2016.12.060
|
82 |
Chen K, Guo S, Fan X D, et al. Coercivity enhancement of Ce-Fe-B sintered magnets by low-melting point intergranular additive[J]. J. Rare Earths, 2017, 35: 158
doi: 10.1016/S1002-0721(17)60894-9
|
83 |
Zhang Z Y. The fundamental properties of rapidly quenched Ce/La-Fe-B alloys and the preparation of Nd-Fe-B based permanent magnets[D]. Guangzhou: South China University of Technology, 2017
|
|
张振扬. 快淬铈/镧-铁-硼合金的基本特性及钕-铁-硼基永磁体的制备[D]. 广州: 华南理工大学, 2017
|
84 |
Jiang Q Z, He L K, Rehman S U, et al. Microstructure characterization and magnetic characteristics of Ce-Fe-B based spark plasma sintered magnets[J]. IEEE Trans. Magn., 2019, 55: 2101806
|
85 |
Lu Q M, Niu J, Liu W Q, et al. Enhanced magnetic properties of spark plasma sintered (La/Ce)-Fe-B magnets[J]. IEEE Trans. Magn., 2017, 53: 2100603
|
86 |
Fan W B, Zhang J S, Liao X F, et al. Preparation of hot worked dual-main phase Nd-Ce-Fe-B magnets and properties modification by grain boundary diffusion[J]. J. Alloys Compd., 2022, 922: 166021
doi: 10.1016/j.jallcom.2022.166021
|
87 |
Hou Y H, Nie Z H, Yao Y F, et al. Effects of Ce content on microstructure evolution and magnetic properties for hot deformed Ce-Fe-B magnets[J]. Intermetallics, 2022, 148: 107644
doi: 10.1016/j.intermet.2022.107644
|
88 |
Wang R Q, Shen X, Liu Y, et al. Effects of Ga addition on the formability of main phase and microstructure of hot-deformed Ce-Fe-B magnets[J]. IEEE Trans. Magn., 2016, 52: 2101806
|
89 |
Liao X F, Zhao L Z, Zhang J S, et al. Textured (Ce, La, Y)-Fe-B permanent magnets by hot deformation[J]. J. Mater. Res. Technol., 2022, 17: 1459
doi: 10.1016/j.jmrt.2022.01.106
|
90 |
Huang Y L, Li Z H, Ge X J, et al. Microstructure, magnetic anisotropy, plastic deformation, and magnetic properties: The role of Pr-Cu in hot deformed CeFeB magnets[J]. J. Alloys Compd., 2019, 797: 1133
doi: 10.1016/j.jallcom.2019.05.027
|
91 |
Ito M, Yano M, Sakuma N, et al. Coercivity enhancement in Ce-Fe-B based magnets by core-shell grain structuring[J]. AIP Adv., 2016, 6: 056029
|
92 |
Wang R Q, Liu Y, Li J, et al. Fabrication of anisotropic NdCeFeB hybrid magnets by hot-deformation: Microstructures and magnetic properties[J]. Mater. Res. Express, 2017, 4: 046104
|
93 |
Jiang Q Z, He L K, Lei W K, et al. Microstructure and magnetic properties of multi-main-phase Ce-Fe-B spark plasma sintered magnets by dual alloy method[J]. J. Magn. Magn. Mater., 2019, 475: 746
doi: 10.1016/j.jmmm.2018.12.041
|
94 |
Chen B, Tang X, Yin W Z, et al. Coercivity enhancement of hot-deformed (Ce, Nd, Pr)-Fe-B magnets by grain boundary diffusion of Pr-Cu alloy[J]. J. Magn. Magn. Mater., 2020, 497: 166002
doi: 10.1016/j.jmmm.2019.166002
|
95 |
Song T T, Li X, Tang X, et al. Effect of Nb doping on microstructure and magnetic properties of hot-deformed Nd-Fe-B magnets with Nd-Cu eutectic diffusion[J]. J. Mater. Sci. Technol., 2022, 122: 121
doi: 10.1016/j.jmst.2021.12.073
|
96 |
Huang Y L, Nie H X, Liu Y Y, et al. Production of anisotropic hot deformed Nd-Fe-B magnets with the addition of Pr-Cu-Al alloy based on nanocomposite ribbon[J]. J. Alloys Compd., 2022, 892: 162072
doi: 10.1016/j.jallcom.2021.162072
|
97 |
Horikawa T, Yamazaki M, Matsuura M, et al. Recent progress in the development of high-performance bonded magnets using rare earth-Fe compounds[J]. Sci. Technol. Adv. Mater., 2021, 22: 729
doi: 10.1080/14686996.2021.1944780
|
98 |
Cao J, Huang Y L, Hou Y H, et al. Microstructure and magnetic properties of MnBi alloys with high coercivity and significant anisotropy prepared by surfactant assisted ball milling[J]. J. Magn. Magn. Mater., 2019, 473: 505
doi: 10.1016/j.jmmm.2018.10.052
|
99 |
Yin X G, Sui Y, Yang Q Q, et al. Preparation and magnetic properties of anisotropic Nd2Fe14B/Sm2Co17 hybrid-bonded magnets[J]. J. Rare Earths, 2019, 37: 1047
doi: 10.1016/j.jre.2019.03.008
|
100 |
Ma B, Sun A Z, Gao X X, et al. Preparation of anisotropic bonded NdFeB/SmFeN hybrid magnets by mixing two different size powders[J]. J. Magn. Magn. Mater., 2018, 457: 70
doi: 10.1016/j.jmmm.2017.11.097
|
101 |
Fukunaga H, Murata H, Yanai T, et al. Prediction method of flux loss in anisotropic NdFeB/SmFeN hybrid magnets[J]. J. Appl. Phys., 2010, 107: 09A736
|
102 |
Zhang D T, Wang P F, Yue M, et al. High-temperature magnetic properties of anisotropic MnBi/NdFeB hybrid bonded magnets[J]. Rare Met., 2016, 35: 471
doi: 10.1007/s12598-015-0668-1
|
103 |
Huang W S, Liao X F, He J Y, et al. Development of bonded (La, Ce, Y)-Fe-B permanent magnets with higher performance/cost ratio than Nd-Fe-B and (Nd, La, Ce)-Fe-B magnets[J]. J. Magn. Magn. Mater., 2022, 559: 169554
doi: 10.1016/j.jmmm.2022.169554
|
104 |
Peng B X, Jin J Y, Liu Y S, et al. Towards peculiar corrosion behavior of multi-main-phase Nd-Ce-Y-Fe-B permanent material with heterogeneous microstructure[J]. Corros. Sci., 2020, 177: 108972
doi: 10.1016/j.corsci.2020.108972
|
105 |
Zhou B, Huang W S, Fan W B, et al. Development of flexible rare earth-Fe-B rubber magnets toward efficient utilization of Ce, La, and Y elements[J]. Adv. Eng. Mater., 2023, 25: 2301329
doi: 10.1002/adem.v25.23
|
106 |
Li S N, Li B Q, Gong L X, et al. Enhanced mechanical properties of polyacrylamide/chitosan hydrogels by tuning the molecular structure of hyperbranched polysiloxane[J]. Mater. Des., 2019, 162: 162
doi: 10.1016/j.matdes.2018.11.045
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|