Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing
SUN Laibo1,2, HUANG Lujun2, HUANG Ruisheng1(), XU Kai1, WU Pengbo1, LONG Weimin3, JIANG Fengchun4, FANG Naiwen1
1Harbin Welding Institute Limited Company, China Academy of Machinery Science and Tecchnology Group, Harbin 150028, China 2School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 3State Key Laboratory of New Brazing Materials and Technology, Zhengzhou Research Institute of Mechanical Engineering Co. Ltd., Zhengzhou 450001, China 4Yantai Research Institute of Harbin Engineering University, Yantai 264000, China
Cite this article:
SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing. Acta Metall Sin, 2024, 60(3): 273-286.
Additive manufacturing (AM) is a rapidly developing technology that has found widespread use in the manufacturing industry. However, the application with high performance and stability requirements is constrained by its coarse microstructure, which exhibits obvious directionality during the deposition of metal parts. Ultrasonic impact treatment (UIT) has been recognized as an effective strengthening method that can improve the stress state, refine the microstructure, and enhance the overall performance of metal parts fabricated via AM. This paper summarizes the theoretical views and limitations of UIT strengthening regarding surface plastic deformation. Additionally, it elaborates on the mechanism of microstructure refinement and the transformation of columnar dendrites to equiaxed dendrites, influenced by the combined effect of UIT and AM. Finally, the paper outlines the problems and suggestions related to strengthening theory that require further investigation in the process of UIT-assisted AM.
Fund: National Key Research and Development Program of China(2021YFB3401100);Heilongjiang Head Goose Action Plan-Advanced Welding Technology Innovation Team of Energy Equipment(201916120);Program of Open Project of the State Key Laboratory of New Brazing Materials and Technology(SKLABFMT202005);High-End Talent Program of China Academy of Machinery Science and Technology Group(202210109)
Corresponding Authors:
HUANG Ruisheng, professor, Tel: 13936168723, E-mail: huangrs8@163.com
Fig.1 Schematics of the working principle[36] (a) and energy conversion[37] (b) of ultrasonic impact treatment (UIT)
Fig.2 SMA490BW steel microstructural evolutions and schematics influenced by UIT[41] (a) microstructure without treatment (b) dislocation multiplication (c) formation of dislocation cells (d) formation of subgrains (e) microstructure refinement
Fig.3 OM images (a) and the grain morphologies drawn from Fig.3a (b), schematics of the strengthening mechanism of UIT-aided additive manufacturing (AM) based on surface plastic deformation (c-e) in Ti-6Al-4V alloy[50]
Fig.4 EBSD inverse pole figure (IPF) maps for Inconel 718 alloy under various conditions (LMD—laser metal deposition)[56] (a) LMD-only as-built (b) LMD + UIP as-built (c) LMD-only solution treated (d) LMD + UIP solution treated
Fig.5 Interlayer microstructures of LMD-only (a) and LMD + UIT (b) cases at as-built condition in Inconel 718 alloy, with left column showing IPF maps, middle column showing kernel average misorientation (KAM) distributions, right column showing the distributions of recrystallization twin boundaries and sub-grain boundaries[66]
Fig.6 Effects of solution treatment (ST) on the microstructure of Inconel 718 alloy, with the left column representing the 1020oC ST condition, center column representing 1100oC condition, and right column representing 1180oC condition[66] (a) LMD-only (b) LMD + UIT
Fig.7 Grain boundary distribution comparisons of typical areas of depositions without (a) and with (b) UIT in low carbon steel[76]
Fig.8 Schematics of microstructure evolution during UIT strengthening AM[76] (a) before UIT (b) dislocation merging and annihilating(c) subgrains formation (d) microstructure refinement
1
Jiang F C, Sun L B, Huang R S, et al. Effects of heat input on morphology of thin-wall components fabricated by wire and arc additive manufacturing [J]. Adv. Eng. Mater., 2021, 23: 2001443
doi: 10.1002/adem.v23.4
2
Truby R L, Lewis J A. Printing soft matter in three dimensions [J]. Nature, 2016, 540: 371
doi: 10.1038/nature21003
3
Sun X F, Song W, Liang J J, et al. Research and development in materials and processes of superalloy fabricated by laser additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 1471
doi: 10.11900/0412.1961.2021.00371
Tian Y B, Shen J Q, Hu S S, et al. Study of the reaction layer of Ti and Al dissimilar alloys by wire and arc additive manufacturing [J]. Acta Metall. Sin., 2019, 55: 1407
Vafadar A, Guzzomi F, Rassau A, et al. Advances in metal additive manufacturing: A review of common processes, industrial applications, and current challenges [J]. Appl. Sci., 2021, 11: 1213
doi: 10.3390/app11031213
6
Paolini A, Kollmannsberger S, Rank E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods [J]. Addit. Manuf., 2019, 30: 100894
7
Emelogu A, Marufuzzaman M, Thompson S M, et al. Additive manufacturing of biomedical implants: A feasibility assessment via supply-chain cost analysis [J]. Addit. Manuf., 2016, 11: 97
8
Oliveira J P, LaLonde A, Ma J. Processing parameters in laser powder bed fusion metal additive manufacturing [J]. Mater. Des., 2020, 193: 108762
doi: 10.1016/j.matdes.2020.108762
9
Tan C L, Zhou K S, Ma W Y, et al. Research progress of laser additive manufacturing of maraging steels [J]. Acta Metall. Sin., 2020, 56: 36
doi: 10.11900/0412.1961.2019.00129
Sun X J, Yang K, Wang Q Y, et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing [J]. Acta Metall. Sin., 2021, 57: 665
doi: 10.11900/0412.1961.2020.00266
Fang N W, Wang X X, Xu K, et al. Effect of shielding gas on arc characteristics and microstructure and properties of laser-arc hybrid welding of low nickel stainless steel [J]. Rare Met. Mater. Eng., 2022, 51: 3089
Lu Z Y, Tian H Y, Chen S J, et al. Review on precision control technologies of additive manufacturing hybrid subtractive process [J]. Acta Metall. Sin., 2020, 56: 83
doi: 10.11900/0412.1961.2019.00053
Ma J K, Li J J, Wang Z J, et al. Bonding zone microstructure and mechanical properties of forging-additive hybrid manufactured Ti-6Al-4V alloy [J]. Acta Metall. Sin., 2021, 57: 1246
Li Z X, Liu C M, Xu T Q, et al. Reducing arc heat input and obtaining equiaxed grains by hot-wire method during arc additive manufacturing titanium alloy [J]. Mater. Sci. Eng., 2019, A742: 287
15
Sun L B, Jiang F C, Huang R S, et al. Anisotropic mechanical properties and deformation behavior of low-carbon high-strength steel component fabricated by wire and arc additive manufacturing [J]. Mater. Sci. Eng., 2020, A787: 139514
16
Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling [J]. J. Mater. Process. Technol., 2013, 213: 1782
doi: 10.1016/j.jmatprotec.2013.04.012
17
Chi J X, Cai Z Y, Wan Z D, et al. Effects of heat treatment combined with laser shock peening on wire and arc additive manufactured Ti17 titanium alloy: Microstructures, residual stress and mechanical properties [J]. Surf. Coat. Technol., 2020, 396: 125908
doi: 10.1016/j.surfcoat.2020.125908
18
Hönnige J R, Davis A E, Ho A, et al. The effectiveness of grain refinement by machine hammer peening in high deposition rate wire-arc AM Ti-6Al-4V [J]. Metall. Mater. Trans., 2020, 51A: 3692
19
Ma Q S, Chen H Z, Ren N N, et al. Effects of ultrasonic vibration on microstructure, mechanical properties, and fracture mode of Inconel 625 parts fabricated by cold metal transfer arc additive manufacturing [J]. J. Mater. Eng. Perform., 2021, 30: 6808
doi: 10.1007/s11665-021-06023-5
20
Diao M X, Guo C H, Sun Q F, et al. Improving mechanical properties of austenitic stainless steel by the grain refinement in wire and arc additive manufacturing assisted with ultrasonic impact treatment [J]. Mater. Sci. Eng., 2022, A857: 144044
21
Zhou X M, Mao X Y, Su G Q, et al. The deformation behavior of the gradient nanostructured microstructure of low-carbon steel under the tensile stress [J]. Mater. Sci. Eng., 2022, A844: 143209
22
Zhou C P, Jiang F C, Xu D, et al. A calculation model to predict the impact stress field and depth of plastic deformation zone of additive manufactured parts in the process of ultrasonic impact treatment [J]. J. Mater. Process. Technol., 2020, 280: 116599
doi: 10.1016/j.jmatprotec.2020.116599
23
Lv J M, Alexandrov I V, Luo K Y, et al. Microstructural evolution and anisotropic regulation in tensile property of cold metal transfer additive manufactured Ti6Al4V alloys via ultrasonic impact treatment [J]. Mater. Sci. Eng., 2022, A859: 144177
24
Cui Z Q, Mi Y J, Qiu D, et al. Microstructure and mechanical properties of additively manufactured CrMnFeCoNi high-entropy alloys after ultrasonic surface rolling process [J]. J. Alloys Compd., 2021, 887: 161393
doi: 10.1016/j.jallcom.2021.161393
25
Zhou C P, Wang J D, Guo C H, et al. Numerical study of the ultrasonic impact on additive manufactured parts [J]. Int. J. Mech. Sci., 2021, 197: 106334
doi: 10.1016/j.ijmecsci.2021.106334
26
Zhang M X, Liu C M, Shi X Z, et al. Residual stress, defects and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted selective laser melting [J]. Appl. Sci., 2016, 6: 304
doi: 10.3390/app6110304
27
Xing X D, Duan X M, Jiang T T, et al. Ultrasonic peening treatment used to improve stress corrosion resistance of AlSi10Mg components fabricated using selective laser melting [J]. Metals, 2019, 9: 103
doi: 10.3390/met9010103
28
Li Y P, Wang C R, Du X D, et al. Research status and quality improvement of wire arc additive manufacturing of metals [J]. Trans. Nonferrous Met. Soc. China, 2023, 33: 969
doi: 10.1016/S1003-6326(23)66160-6
29
Walker P, Malz S, Trudel E, et al. Effects of ultrasonic impact treatment on the stress-controlled fatigue performance of additively manufactured DMLS Ti-6Al-4V alloy [J]. Appl. Sci., 2019, 9: 4787
doi: 10.3390/app9224787
30
Lesyk D A, Martinez S, Mordyuk B N, et al. Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress [J]. Surf. Coat. Technol., 2020, 381: 125136
doi: 10.1016/j.surfcoat.2019.125136
31
Wang Y C, Roy S, Choi H, et al. Cracking suppression in additive manufacturing of hard-to-weld nickel-based superalloy through layer-wise ultrasonic impact peening [J]. J. Manuf. Process., 2022, 80: 320
doi: 10.1016/j.jmapro.2022.05.041
32
Panin A V, Kazachenok M S, Dmitriev A I, et al. The effect of ultrasonic impact treatment on deformation and fracture of electron beam additive manufactured Ti-6Al-4V under uniaxial tension [J]. Mater. Sci. Eng., 2022, A832: 142458
33
Daavari M, Vanini S A S. Corrosion fatigue enhancement of welded steel pipes by ultrasonic impact treatment [J]. Mater. Lett., 2015, 139: 462
doi: 10.1016/j.matlet.2014.10.141
34
Panin S V, Sergeev V P, Pochivalov Y I, et al. Increase of wear-resistance of 30CrMnSi2Ni steel by ultrasonic impact and ion-beam treatments [A]. Proceedings of the 2008 3rd International Forum on Strategic Technologies [C]. Novosibirsk: IEEE, 2008: 83
35
Statnikov E S, Muktepavel V O. Technology of ultrasound impact treatment as a means of improving the reliability and endurance of welded metal structures [J]. Weld. Int., 2003, 17: 741
doi: 10.1533/wint.2003.3192
36
Berg-Pollack A, Voellmecke F J, Sonsino C M. Fatigue strength improvement by ultrasonic impact treatment of highly stressed spokes of cast aluminium wheels [J]. Int. J. Fatigue, 2011, 33: 513
doi: 10.1016/j.ijfatigue.2010.09.017
37
Guo C B, Wang Z J, Wang D P, et al. Numerical analysis of the residual stress in ultrasonic impact treatment process with single-impact and two-impact models [J]. Appl. Surf. Sci., 2015, 347: 596
doi: 10.1016/j.apsusc.2015.04.128
38
Mordyuk B N, Prokopenko G I. Ultrasonic impact peening for the surface properties' management [J]. J. Sound Vib., 2007, 308: 855
doi: 10.1016/j.jsv.2007.03.054
39
Roland T, Retraint D, Lu K, et al. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment [J]. Scr. Mater., 2006, 54: 1949
doi: 10.1016/j.scriptamat.2006.01.049
40
Xu L Y, Gao Y L, Zhao L, et al. Ultrasonic micro-forging post-treatment assisted laser directed energy deposition approach to manufacture high-strength Hastelloy X superalloy [J]. J. Mater. Process. Technol., 2022, 299: 117324
doi: 10.1016/j.jmatprotec.2021.117324
41
He B L, Xiong L, Jiang M M, et al. Surface grain refinement mechanism of SMA490BW steel cross joints by ultrasonic impact treatment [J]. Int. J. Min. Metall. Mater., 2017, 24: 410
doi: 10.1007/s12613-017-1421-6
42
Yang X J, Zhou J X, Liang X. Study on plastic damage of AISI 304 stainless steel induced by ultrasonic impact treatment [J]. Mater. Des., 2012, 36: 477
doi: 10.1016/j.matdes.2011.11.023
43
Kubin L P, Mortensen A. Geometrically necessary dislocations and strain- gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
44
He B L, Yu X Y, Yu H H, et al. Grain refining mechanism and fatigue properties of bogie welded cruciform joints treated by ultrasonic impact [J]. Curr. Nanosci., 2012, 8: 17
doi: 10.2174/1573413711208010017
45
Panin S V, Pochivalov Y I, Perevalova O B, et al. Effect of ultrasonic impact treatment on mechanical properties of 3D-printed Ti-6Al-4V titanium alloy parts [J]. AIP Conf. Proc., 2019, 2141: 040012
46
Li M Y, Zhang Q, Han B, et al. Investigation on microstructure and properties of Al x CoCrFeMnNi high entropy alloys by ultrasonic impact treatment [J]. J. Alloys Compd., 2020, 816: 152626
doi: 10.1016/j.jallcom.2019.152626
47
Frazier W E. Metal additive manufacturing: A review [J]. J. Mater. End. Perform., 2014, 23: 1917
48
Collins P C, Brice D A, Samimi P, et al. Microstructural control of additively manufactured metallic materials [J]. Annu. Rev. Mater. Res., 2016, 46: 63
doi: 10.1146/matsci.2016.46.issue-1
49
Sames W J, List F A, Pannala S, et al. The metallurgy and processing science of metal additive manufacturing [J]. Int. Mater. Rev., 2016, 61: 315
doi: 10.1080/09506608.2015.1116649
50
Yang Y C, Jin X, Liu C M, et al. Residual stress, mechanical properties, and grain morphology of Ti-6Al-4V alloy produced by ultrasonic impact treatment assisted wire and arc additive manufacturing [J]. Metals, 2018, 8: 934
doi: 10.3390/met8110934
51
Bezençon C, Schnell A, Kurz W. Epitaxial deposition of MCrAlY coatings on a Ni-base superalloy by laser cladding [J]. Scr. Mater., 2003, 49: 705
doi: 10.1016/S1359-6462(03)00369-5
52
Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing [J]. Sci. Technol. Adv. Mater., 2001, 2: 185
doi: 10.1016/S1468-6996(01)00047-X
53
Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing-microstructure maps [J]. Acta Mater., 2001, 49: 1051
doi: 10.1016/S1359-6454(00)00367-0
54
Wang F D, Williams S, Colegrove P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V [J]. Metall. Mater. Trans., 2013, 44A: 968
55
Wann C R, Li Y P, Tian W, et al. Influence of ultrasonic impact treatment and working current on microstructure and mechanical properties of 2219 aluminium alloy wire arc additive manufacturing parts [J]. J. Mater. Res. Technol., 2022, 21: 781
doi: 10.1016/j.jmrt.2022.09.055
56
Wang Y C, Shi J. Microstructure and properties of Inconel 718 fabricated by directed energy deposition with in-situ ultrasonic impact peening [J]. Metall. Mater. Trans., 2019, 50B: 2815
57
Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel [J]. Acta Mater., 2010, 58: 5354
doi: 10.1016/j.actamat.2010.06.010
58
Zhang H W, Hei Z K, Liu G, et al. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Mater., 2003, 51: 1871
doi: 10.1016/S1359-6454(02)00594-3
59
Wang M Y, Xin R L, Wang B S, et al. Effect of initial texture on dynamic recrystallization of AZ31 Mg alloy during hot rolling [J]. Mater. Sci. Eng., 2011, A528: 2941
60
Wang X, Brünger E, Gottstein G. The role of twinning during dynamic recrystallization in alloy 800H [J]. Scr. Mater., 2002, 46: 875
doi: 10.1016/S1359-6462(02)00072-6
61
Doherty R D, Hughes D A, Humphreys F J, et al. Current issues in recrystallization: A review [J]. Mater. Sci. Eng., 1997, A238: 219
62
Trufyakov V, Mikheev P, Kudryavtsev Y. Fatigue Strength of Welded Structures, Residual Stresses and Improvement Treatments [M]. London: Harwood Academic Publishers GmbH, 1995: 100
63
Holopov Y V. Treatment of metal welded joints by ultrasound aimed on residual stress decreasing [J]. Svar. Proiz., 1973, 12: 200
64
Prokopenko G, Kuzmich G. The accumulation of plastic strain in metals under multiple impulse loading of various frequencies [J]. Phys. Met., 1994, 13: 464
65
Statnikov E S, Korolkov O V, Vityazev V N. Physics and mechanism of ultrasonic impact [J]. Ultrasonics, 2006, 44: e533
doi: 10.1016/j.ultras.2006.05.119
66
Wang Y C, Shi J. Recrystallization behavior and tensile properties of laser metal deposited Inconel 718 upon in-situ ultrasonic impact peening and heat treatment [J]. Mater. Sci. Eng., 2020, A786: 139434
67
Mohtadi-Bonab M A, Eskandari M, Szpunar J A. Texture, local misorientation, grain boundary and recrystallization fraction in pipeline steels related to hydrogen induced cracking [J]. Mater. Sci. Eng., 2015, A620: 97
68
AlMangour B, Grzesiak D, Yang J M. Nanocrystalline TiC-reinforced H13 steel matrix nanocomposites fabricated by selective laser melting [J]. Mater. Des., 2016, 96: 150
doi: 10.1016/j.matdes.2016.02.022
69
Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718 [J]. Mater. Sci. Eng., 2016, A678: 137
70
Siu K W, Ngan A H W, Jones I P. New insight on acoustoplasticity-ultrasonic irradiation enhances subgrain formation during deformation [J]. Int. J. Plast., 2011, 27: 788
doi: 10.1016/j.ijplas.2010.09.007
71
Kudryavtsev Y, Kleiman J, Lobanov L, et al. Fatigue life improvement of welded elements by ultrasonic peening [EB/OL].
72
McAndrew A R, Rosales M A, Colegrove P A, et al. Interpass rolling of Ti-6Al-4V wire + arc additively manufactured features for microstructural refinement [J]. Addit. Manuf., 2018, 21: 340
73
Tomio Y, Furuhara T, Maki T. Effect of cooling rate on superelasticity and microstructure evolution in Ti-10V-2Fe-3Al and Ti-10V-2Fe-3Al-0.2N alloys [J]. Mater. Trans., 2009, 50: 2731
doi: 10.2320/matertrans.MA200909
74
Furuhara T, Takayama N, Miyamoto G. Key factors in grain refinement of martensite and bainite [J]. Mater. Sci. Forum, 2010, 638-642: 3044
doi: 10.4028/www.scientific.net/MSF.638-642
75
Miao C L, Shang C J, Wang X M, et al. Microstructure and toughness of HAZ in X80 pipeline steel with high Nb content [J]. Acta Metall. Sin., 2010, 46: 541
doi: 10.3724/SP.J.1037.2009.00803
Sun L B, Guo C H, Huang R S, et al. Effect and mechanism of inter-layer ultrasonic impact strengthening on the anisotropy of low carbon steel components fabricated by wire and arc additive manufacturing [J]. Mater. Sci. Eng., 2022, A848: 143382
Estrin E I. Recrystallization-induced plasticity [J]. Phys. Met. Metall., 2006, 102: 324
doi: 10.1134/S0031918X06090134
79
Monroe J A, Gehring D, Karaman I, et al. Tailored thermal expansion alloys [J]. Acta Mater., 2016, 102: 333
doi: 10.1016/j.actamat.2015.09.012
80
Liu G, Li J, Zhang S G, et al. Dilatometric study on the recrystallization and austenization behavior of cold-rolled steel with different heating rates [J]. J. Alloys Compd., 2016, 666: 309
doi: 10.1016/j.jallcom.2016.01.137
81
Chakravarthy S S, Curtin W A. Effect of source and obstacle strengths on yield stress: A discrete dislocation study [J]. J. Mech. Phys. Solids, 2010, 58: 625
doi: 10.1016/j.jmps.2010.03.004
82
Antonysamy A A, Meyer J, Prangnell P B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting [J]. Mater. Charact., 2013, 84: 153
doi: 10.1016/j.matchar.2013.07.012
83
Dinda G P, Dasgupta A K, Mazumder J. Texture control during laser deposition of nickel-based superalloy [J]. Scr. Mater., 2012, 76: 503
84
Lin D Y, Xu L Y, Jing H Y, et al. Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting [J]. Addit. Manuf., 2020, 32: 101058
85
Stüwe H P, Padilha A F, Siciliano Jr F. Competition between recovery and recrystallization [J]. Mater. Sci. Eng., 2002, A333: 361
86
Quested T E, Greer A L. Athermal heterogeneous nucleation of solidification [J]. Acta Mater., 2005, 53: 2683
doi: 10.1016/j.actamat.2005.02.028
87
Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic [J]. Mater. Sci. Eng., 1984, 65: 75
88
Martorano M A, Beckermann C, Gandin C A. A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification [J]. Metall. Mater. Trans., 2003, 34A: 1657
89
Reinhart G, Mangelinck-Noël N, Nguyen-Thi H, et al. Investigation of columnar-equiaxed transition and equiaxed growth of aluminium based alloys by X-ray radiography [J]. Mater. Sci. Eng., 2005, A413-414: 384
90
Kad B K, Gebert J M, Perez-Prado M T, et al. Ultrafine-grain-sized zirconium by dynamic deformation [J]. Acta Mater., 2006, 54: 4111
doi: 10.1016/j.actamat.2006.03.053
91
Vasylyev M A, Chenakin S P, Yatsenko L F. Ultrasonic impact treatment induced oxidation of Ti6Al4V alloy [J]. Acta Mater., 2016, 103: 761
doi: 10.1016/j.actamat.2015.10.041
92
Petrov Y N, Prokopenko G I, Mordyuk B N, et al. Influence of microstructural modifications induced by ultrasonic impact treatment on hardening and corrosion behavior of wrought Co-Cr-Mo biomedical alloy [J]. Mater. Sci. Eng., 2016, C58: 1024
93
Kar P, Wang K, Liang H. Force-dominated non-equilibrium oxidation kinetics of tantalum [J]. Electrochim. Acta, 2008, 53: 5084
doi: 10.1016/j.electacta.2008.02.034
94
Singh V, Marya M, Roy I, et al. Surface property enhancement of UNS N07718 and G41400 by ultrasonic impact treatment [J]. Mater. Sci. Forum, 2014, 783-786: 2863
doi: 10.4028/www.scientific.net/MSF.783-786