Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys
WANG Lei1(), LIU Mengya1, LIU Yang1(), SONG Xiu1, MENG Fanqiang2
1Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China 2Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519000, China
Cite this article:
WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys. Acta Metall Sin, 2023, 59(9): 1173-1189.
There has been rapid development in the turbine power systems of aeroengines and gas turbines. Consequently, the application of surface impact strengthening technology for the surface strengthening of superalloys used in turbine rotors and its corresponding mechanisms have attracted wide attention. However, it is difficult to prevent the recovery and recrystallization of the surface hardened layer of superalloys serviced at high temperatures. This leads to the degradation of both the surface strengthening/toughening and fatigue resistance. This is the main hurdle restricting the wide application of surface impact strengthening technology for key components of advanced superalloys. In this paper, the progress made in surface impact strengthening mechanisms and the applications of nickel-based superalloys in recent years are summarized. The effect of surface impact strengthening on the surface strength, toughness, and fatigue resistance of nickel-based superalloys is analyzed. The evolution of the microstructure of the hardened surface of the alloys during long-term aging at high temperatures, and its effect on high-temperature stability are explored. The paper aims to provide essential and important information for developing surface impact strengthening mechanisms of nickel-based superalloys and improving the fatigue resistance of turbine rotors of aeroengines and gas turbines.
Fund: National Key Research and Development Program of China(2022YFB3705102);National Key Research and Development Program of China(2022YFB3705101);National Science and Technology Major Project of China(J2019-VI-0020-0136);National Natural Science Foundation of China(U1708253);National Natural Science Foundation of China(51571052)
Fig.1 Effects of shot peening on the residual compress-ive stress distribution of surface hardened layer of FGH96 alloy[30] (a) before shot peening (turning) (b) ceramic bead peening and compound shot peening (SP1—parallel to the tool mark, SP2—perpendicular to the tool mark)
Fig.2 Nanocrystalline and deformation twins layer with gradient distribution in the cross-sectional surface hardened layer obtained by shot peening of GH4169 alloy[33]
Fig.3 Surface morphologies of GH4169 alloy before (a) and after shot peening with intensities of 0.15 mmA (b) and 0.3 mmA (c)[13]
Fig.4 Effects of shot peening on fatigue crack initiation location of Udimet 720Li alloy before (a, c) and after (b, d) shot peening under the same load amplitude[35] (Fig.4c enlarged for red frame in Fig.4a, Fig.4d enlarged for the lake blue frame in Fig.4b)
Fig.5 Effects of surface shot peening with different intensities on S-N curves of GH4169 superalloy[13] (S—stress amplitude, N—number of cycle to failure)
Fig.6 Residual compressive stress distributions of hard-ened layer of IN718 alloys with different hole extrusion treatments[43] (Inset shows the stress and distance direction of hole extrusion treatment)
Fig.7 Surface morphologies of FGH96 alloys with different surface treatments[48] (a) mechanical polishing (b) laser shocking processing (LSP)
Fig.8 Morphologies of γ″ phase and dislocation patterns in the hardened layers of IN718 alloy treated with LSP (a) and warm laser shocking processing (WLSP) (Blue arrows show the γ″ phase/high-density dislocation complex structure containing stacking faults and nanosized twins) (b)[52]
Fig.9 Residual compressive stress distributions of GH4586 alloy treated with LSP of single laser pulse[50] (a) surface layer along the diameter direction (b) depth direction from the surface to the inside
Fig.10 Effect of LSP on grain size and number of twins on the surface of GH4586 alloy[50] (a) untreated (b) LSP
Fig.11 Effect of LSP on the dislocation density of matrix and microstructure of γ′ phase in the surface hardened layer in nickel-based single crystal superalloy[65] (a) untreated (b-d) low (b) and high (c) magnified images of samples treated by LSP, and SAED pattern of Fig.11c (d)
Fig.12 Effect of LSP and WLSP on the surface microhardness distribution of IN718 alloy[19]
Fig.13 Morphologies of complex structure of γ″ phase/high-density dislocation and micro-twins in γ″ phase induced by strong impact in the surface hardened layer of WLSP-treated IN718 superalloy[19] (a) morphology of complex structure of γ″ phase/high-density dislocation (b) dark field morphology of γ″ phase in Fig.13a (Blue arrows show micro-twins) (c) micro-twins in γ″ phase induced by strong impact (Blue arrows show micro-twins) (d) HRTEM image of micro-twins at the γ/γ″ interface
Fig.14 HRTEM images of the details of γ″/γ interface in the surface hardened layer of WLSP-treated IN718 superalloy[52] (a, d) HRTEM images of γ″/γ interface (a) and γ″ phase (d) in the surface hardened layer (Insets show fast Fourier transform (FFT) diffraction patterns) (b, e) magnified parts in the red boxes in Fig.14a (b) and Fig.14d (e), showing HRTEM images and corresponding maps of the geometric phase images (GPA) strain component εxx (εxx —x-direction in-plane strain) (c, f) line profiles of strain maps scanned along lines 1, 2, and 3 in Fig.14b (c) and lines 4, 5, and 6 in Fig.14e (f)
Fig.15 Effects of aging on the microhardness distribution in the surface hardened layer of LSP and WLSP samples of IN718 alloy at 650oC for 200 h[52] (Insets show optical micrographs of the Vickers indentation. LTA—long-term aging)
Fig.16 Comparisons of residual stress distribution of the surface hardened layer of IN100 alloy after aging at 650oC for 100 h[82] (a) shot peening (b) LSP
Fig.17 Micro-hardness distributions and depth changes of the surface hardened layer of LSP and WLSP IN718 alloys after aging at high temperatures (NA—non-aging)[81] (a) micro-hardness of surface hardened layer after aging at different temperatures treated by LSP and WLSP (b) comparison of micro-hardness of hardened layer (c) comparison of hardened layer depth
Fig.18 Effects of long-term aging on the contribution increment of strengthening mechanism of the surface hardened layer of LSP and WLSP IN718 alloys[81] (ΔσD—strength contribution from dislocation strengthening, ΔσGB—strength contribution from grain boundary strengthening)
Fig.19 Geometrically necessary dislocation (GND) density (ρGND) maps (a, b, d, e) and corresponding normal distribution statistical diagrams of GND density (c, f) of the surface hardened layer of LSP (a-c) and WLSP (d-f) IN718 alloys before (a, d) and after (b, e) long-term aging at 650oC[52] (RD—rolling direction, TD—transverse direction, ND—normal direction)
1
Ren X P, Liu Z Q. Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy [J]. Int. J. Miner., Metall. Mater., 2018, 25: 937
doi: 10.1007/s12613-018-1643-2
2
Stinville J C, Callahan P G, Charpagne M A, et al. Direct measurements of slip irreversibility in a nickel-based superalloy using high resolution digital image correlation [J]. Acta Mater., 2020, 186: 172
doi: 10.1016/j.actamat.2019.12.009
3
Pradhan D, Mahobia G S, Chattopadhyay K, et al. Effect of surface roughness on corrosion behavior of the superalloy IN718 in simulated marine environment [J]. J. Alloys Compd., 2018, 740: 250
doi: 10.1016/j.jallcom.2018.01.042
4
Pradhan D, Mahobia G S, Chattopadhyay K, et al. Effect of pre hot corrosion on high cycle fatigue behavior of the superalloy IN718 at 600oC [J]. Int. J. Fatigue, 2018, 114: 120
doi: 10.1016/j.ijfatigue.2018.05.021
5
Telesman J, Gabb T P, Kantzos P T, et al. Effect of broaching machining parameters, residual stresses and cold work on fatigue life of Ni-based turbine disk P/M alloy at 650oC [J]. Int. J. Fatigue, 2021, 150: 106328
doi: 10.1016/j.ijfatigue.2021.106328
6
Zangeneh S, Lashgari H R, Asnavandi M. The effect of long-term service exposure on the stability of carbides in Co-Cr-Ni-W (X-45) superalloy [J]. Eng. Failure Anal., 2018, 84: 276
doi: 10.1016/j.engfailanal.2017.11.018
7
Zhang P Y, Zhou X, Wang X D, et al. Study on the microstructural degradation and rejuvenation heat treatment of directionally solidified turbine blades [J]. J. Alloys Compd., 2020, 829: 154474
doi: 10.1016/j.jallcom.2020.154474
8
Vikram R J, Singh A, Suwas S, et al. Effect of heat treatment on the modification of microstructure of selective laser melted (SLM) IN718 and its consequences on mechanical behavior [J]. J. Mater. Res., 2020, 35: 1949
doi: 10.1557/jmr.2020.129
9
Deng H Z, Wang L, Liu Y, et al. The evolution law of δ phase of IN718 superalloy in temperature/stress coupled field [J]. Mater. Charact., 2022, 184: 111684
doi: 10.1016/j.matchar.2021.111684
10
An J L, Wang L, Liu Y, et al. The role of δ phase for fatigue crack propagation behavior in a Ni base superalloy at room temperature [J]. Mater. Sci. Eng., 2017, A684: 312
11
Tomevenya K M, Liu S J. Probabilistic fatigue-creep life reliability assessment of aircraft turbine disk [J]. J. Mech. Sci. Technol., 2018, 32: 5127
doi: 10.1007/s12206-018-1010-2
12
Maleki E, Unal O, Guagliano M, et al. The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718 [J]. Mater. Sci. Eng., 2021, A810: 141029
13
Qin Z, Li B, Chen R, et al. Effect of shot peening on high cycle and very high cycle fatigue properties of Ni-based superalloys [J]. Int. J. Fatigue, 2023, 168: 107429
doi: 10.1016/j.ijfatigue.2022.107429
14
Yang J, Liu D X, Fan K F, et al. Designing a gradient structure in a Ni-based superalloy to improve fretting fatigue resistance at elevated temperatures through an ultrasonic surface rolling process [J]. Int. J. Fatigue, 2023, 168: 107397
doi: 10.1016/j.ijfatigue.2022.107397
15
Wu J J, Huang Z, Qiao H C, et al. Prediction about residual stress and microhardness of material subjected to multiple overlap laser shock processing using artificial neural network [J]. J. Cent. South Univ., 2022, 29: 3346
doi: 10.1007/s11771-022-5158-7
16
Gu H Q, Yan P, Jiao L, et al. Effect of laser shock peening on boring hole surface integrity and conformal contact fretting fatigue life of Ti-6Al-4V alloy [J]. Int. J. Fatigue, 2023, 166: 107241
doi: 10.1016/j.ijfatigue.2022.107241
17
Zhang H P, Cai Z Y, Chi J X, et al. Microstructural evolution, mechanical behaviors and strengthening mechanism of 300 M steel subjected to multi-pass laser shock peening [J]. Opt. Lasers Technol., 2022, 148: 107726
doi: 10.1016/j.optlastec.2021.107726
18
Wang C Y, Luo Y K, Wang J, et al. Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420 stainless steel during laser shock peening [J]. Int. J. Plast., 2022, 150: 103191
doi: 10.1016/j.ijplas.2021.103191
19
Liu Y, Wang L, Yang K Y, et al. Effects of thermally assisted warm laser shock processing on the microstructure and fatigue property of IN718 superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1645
doi: 10.1007/s40195-021-01340-z
20
Lin C H, Wu H B, Li Z G, et al. Evaluation of oblique laser shock peening effect of FGH95 superalloy turbine disk material [J]. Mater. Today Commun., 2022, 31: 103534
21
Geng Y X, Mo Y, Zheng H Z, et al. Effect of laser shock peening on the hot corrosion behavior of Ni-based single-crystal superalloy at 750oC [J]. Corros. Sci., 2021, 185: 109419
doi: 10.1016/j.corsci.2021.109419
22
Qiao Y, Guo P Q, Chen H T, et al. Roughness prediction model of face milling surface for nickel-based superalloy FGH97 [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 562: 012154
23
Jiang R, Song Y D, Reed P A. Fatigue crack growth mechanisms in powder metallurgy Ni-based superalloys—A review [J]. Int. J. Fatigue, 2020, 141: 105887
doi: 10.1016/j.ijfatigue.2020.105887
24
Xu C, Yao Z H, Dong J X, et al. Mechanism of high-temperature oxidation effects in fatigue crack propagation and fracture mode for FGH97 superalloy [J]. Rare Met., 2019, 38: 642
doi: 10.1007/s12598-018-1123-x
25
Zhang X S, Ma Y E, Yang M, et al. A comprehensive review of fatigue behavior of laser shock peened metallic materials [J]. Theor. Appl. Mech., 2022, 122: 103642
26
Child D J, West J D, Thomson R C. Assessment of surface hardening effects from shot peening on a Ni-based alloy using electron backscatter diffraction techniques [J]. Acta Mater., 2011, 59: 4825
doi: 10.1016/j.actamat.2011.04.025
27
Zhong L Q, Liang Y L, Hu H. Study on plastic deformation characteristics of shot peening of Ni-based superalloy GH4079 [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 230: 012041
28
Zhong L Q, Liang Y L, Yan Z, et al. Effect of shot peening on high cycle fatigue limit of FGH4097 P/M superalloys at room temperature [J]. Rare Met. Mater. Eng., 2018, 47: 2198
Kumar D, Idapalapati S, Wang W, et al. Microstructure-mechanical property correlation in shot peened and vibro-peened Ni-based superalloy [J]. J. Mater. Process. Technol., 2019, 267: 215
doi: 10.1016/j.jmatprotec.2018.12.007
30
Wang X, Xu C L, Wang X F, et al. Turning/shot peening of nickel-based powder metallurgy superalloy: Effect on surface integrity and high-temperature low-cycle fatigue properties [J]. Int. J. Fatigue, 2023, 166: 107291
doi: 10.1016/j.ijfatigue.2022.107291
31
Gao Y K, Zhong Z, Lei L M. Influence of laser peening and shot peening on fatigue properties of FGH97 superalloy [J]. Rare Met. Mater. Eng., 2016, 45: 1230
Luo X K, Zhang W C, Wu B, et al. Effect of combination of laser shock peening and shot peening on surface integrity and fatigue property of K4169 casting alloy [J]. Aeron. Manuf. Technol., 2022, 65(11): 57
Zhao X H, Zhou H Y, Liu Y. Effect of shot peening on the fatigue properties of nickel-based superalloy GH4169 at high temperature [J]. Results Phys., 2018, 11: 452
doi: 10.1016/j.rinp.2018.09.047
34
Klotz T, Delbergue D, Bocher P, et al. Surface characteristics and fatigue behavior of shot peened Inconel 718 [J]. Int. J. Fatigue, 2018, 110: 10
doi: 10.1016/j.ijfatigue.2018.01.005
35
Dong C L, Yang S K, Peng Z C. Effect of shot peening on notched fatigue performance of powder metallurgy Udimet 720Li superalloy [J]. Intermetallics, 2021, 135: 107226
doi: 10.1016/j.intermet.2021.107226
36
Shen X J, Wang C, Sun D, et al. Comparison research on mechanical properties of high temperature alloy after laser peened and ultrasonically peened [J]. Appl. Mech. Mater., 2014, 670-671: 46
doi: 10.4028/www.scientific.net/AMM.670-671
37
Chen Y X, Wang J C, Gao Y K, et al. Effect of shot peening on fatigue performance of Ti2AlNb intermetallic alloy [J]. Int. J. Fatigue, 2019, 127: 53
doi: 10.1016/j.ijfatigue.2019.05.034
38
Luo J, Bowen P. Effects of temperature and shot peening on S-N behavior of a PM Ni-base superalloy UDIMET 720 [J]. Metall. Mater. Trans., 2004, 35A: 1007
39
Wu D X, Yao C F, Zhang D H. Surface characterization and fatigue evaluation in GH4169 superalloy: comparing results after finish turning; shot peening and surface polishing treatments [J]. Int. J. Fatigue, 2018, 113: 222
doi: 10.1016/j.ijfatigue.2018.04.009
40
Sun Z Y, Ye Y D, Xu J B, et al. Effect of electropulsing on surface mechanical behavior and microstructural evolution of Inconel 718 during ultrasonic surface rolling process [J]. J. Mater. Eng. Perform., 2019, 28: 6789
doi: 10.1007/s11665-019-04443-y
41
Jiang H, Li L H, Dong J X, et al. Microstructure-based hot extrusion process control principles for nickel-base superalloy pipes [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 391
doi: 10.1016/j.pnsc.2018.04.009
42
Wang X, Hu R G, Hu B, et al. Effect of hole-expansion on high-temperature fatigue property of GH4169 superalloy hole structure [J]. J. Aerosp. Power, 2017, 32: 89
Yang J, Liu D X, Zhang X H, et al. The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy [J]. Int. J. Fatigue, 2020, 133: 105373
doi: 10.1016/j.ijfatigue.2019.105373
45
Yin M G, Cai Z B, Zhang Z X, et al. Effect of ultrasonic surface rolling process on impact-sliding wear behavior of the 690 alloy [J]. Tribol. Int., 2020, 147: 105600
doi: 10.1016/j.triboint.2019.02.008
46
Sun Z Y, Zhang Y F, Zhao X J, et al. Effect of electropulsing on the surface mechanical behavior of GH4169 during ultrasonic surface rolling process [J]. Ordnance Mater. Sci. Eng., 2021, 44(3): 33
Ermakova A, Braithwaite J, Razavi J, et al. The influence of laser shock peening on corrosion-fatigue behaviour of wire arc additively manufactured components [J]. Surf. Coat. Technol., 2023, 456: 129262
doi: 10.1016/j.surfcoat.2023.129262
48
Tan Q, Yan Z R, Huang H, et al. Surface integrity and oxidation of a powder metallurgy Ni-based superalloy treated by laser shock peening [J]. JOM, 2020, 72: 1803
doi: 10.1007/s11837-020-04054-2
49
Rozmus-Górnikowska M, Kusiński J, Cieniek Ł. Effect of laser shock peening on the microstructure and properties of the inconel 625 surface layer [J]. J. Mater. Eng. Perform., 2020, 29: 1544
doi: 10.1007/s11665-020-04667-3
50
Cao J D, Zhang J S, Hua Y Q, et al. Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing [J]. J. Wuhan Univ. Technol.—Mater. Sci. Ed., 2017, 32: 1186
51
Luo S H, Nie X F, Zhou L C, et al. Thermal stability of surface nanostructure produced by laser shock peening in a Ni-based superalloy [J]. Surf. Coat. Technol., 2017, 311: 337
doi: 10.1016/j.surfcoat.2017.01.031
52
Liu Y, Wang L, Yang K Y, et al. Characteristics of microstructure evolution of surface treated IN718 superalloy by warm laser shock peening during long-term aging at high temperatures [J]. Mater. Charact., 2022, 193: 112261
doi: 10.1016/j.matchar.2022.112261
53
Pan X L, Guo S Q, Tian Z, et al. Fatigue performance improvement of laser shock peened hole on powder metallurgy Ni-based superalloy labyrinth disc [J]. Surf. Coat. Technol., 2021, 409: 126829
doi: 10.1016/j.surfcoat.2021.126829
54
Mythreyi O V, Nagesha B K, Jayaganthan R. Microstructural evolution & corrosion behavior of laser-powder-bed-fused Inconel 718 subjected to surface and heat treatments [J]. J. Mater. Res. Technol., 2022, 19: 3201
doi: 10.1016/j.jmrt.2022.05.123
55
Orozco-Caballero A, Jackson T, da Fonseca J Q. High-resolution digital image correlation study of the strain localization during loading of a shot-peened RR1000 nickel-based superalloy [J]. Acta Mater., 2021, 220: 117306
doi: 10.1016/j.actamat.2021.117306
56
Morançais A, Fèvre M, François M, et al. Residual stress determination in a shot-peened nickel-based single-crystal superalloy using X-ray diffraction [J]. J. Appl. Crystallogr., 2015, 48: 1761
doi: 10.1107/S1600576715017689
57
Goulmy J P, Kanoute P, Rouhaud E, et al. A calibration procedure for the assessment of work hardening Part II: Application to shot peened IN718 parts [J]. Mater. Charact., 2021, 175: 111068
doi: 10.1016/j.matchar.2021.111068
58
Salvati E, Lunt A J G, Heason C P, et al. An analysis of fatigue failure mechanisms in an additively manufactured and shot peened IN 718 nickel superalloy [J]. Mater. Des., 2020, 191: 108605
doi: 10.1016/j.matdes.2020.108605
59
Gibson G J, Perkins K M, Gray S, et al. Influence of shot peening on high-temperature corrosion and corrosion-fatigue of nickel based superalloy 720Li [J]. Mater. High Temp., 2016, 33: 225
doi: 10.1080/09603409.2016.1161945
60
Song D Y, Luo Z P, Yang Y R, et al. Microstructure of the hole expansion strengthened layer of high temperature alloy GH169 [J]. Acta Aeronaut. Astronaut. Sin., 1996, 17(1): 123
Messé O M D M, Stekovic S, Hardy M C, et al. Characterization of plastic deformation induced by shot-peening in a Ni-base superalloy [J]. JOM, 2014, 66: 2502
doi: 10.1007/s11837-014-1184-8
62
Wang D L, Li J B, Jin T, et al. Fatigue-life improvement of K417 alloy by shot peening and recrystallization [J]. Rare Met. Mater. Eng., 2006, 35: 1294
Ren X D. Laser Impact Peening of High Temperature Service Materials [M]. Beijing: Science Press, 2014: 11
任旭东. 高温服役材料激光冲击强化技术 [M]. 北京: 科学出版社, 2014: 11
64
Yu Y Q, Gong J N, Fang X Y, et al. Comparison of surface integrity of GH4169 superalloy after high-energy, low-energy, and femtosecond laser shock peening [J]. Vacuum, 2023, 208: 111740
doi: 10.1016/j.vacuum.2022.111740
65
Geng Y X, Dong X, Wang K D, et al. Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure [J]. Opt. Lasers Technol., 2020, 123: 105917
doi: 10.1016/j.optlastec.2019.105917
66
Wang Y F, Zhu Y T, Wu X L, et al. Inter-zone constraint modifies the stress-strain response of the constituent layer in gradient structure [J]. Sci. China Mater., 2021, 64: 3114
doi: 10.1007/s40843-021-1702-2
67
Gao B, Lai Q Q, Cao Y, et al. Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling [J]. Sci. Adv., 2020, 6: eaba8169
doi: 10.1126/sciadv.aba8169
68
Sun G S, Liu J Z, Zhu Y T. Heterostructure alleviates Lüders deformation of ultrafine-grained stainless steels [J]. Mater. Sci. Eng., 2022, A848: 143393
69
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
70
Ding R, Yang Z G, van der Zwaag S, et al. How chemical boundary engineering can produce cheap, ultra-strong steels [J]. Proc. Inst. Civil Eng.—Civil Eng., 2020, 173: 102
71
Altinkurt G, Fèvre M, Geandier G, et al. Local strain redistribution in a coarse-grained nickel-based superalloy subjected to shot-peening, fatigue or thermal exposure investigated using synchrotron X-ray Laue microdiffraction [J]. J. Mater. Sci., 2018, 53: 8567
doi: 10.1007/s10853-018-2144-4
72
Salvati E, Lunt A J G, Ying S, et al. Eigenstrain reconstruction of residual strains in an additively manufactured and shot peened nickel superalloy compressor blade [J]. Comput. Methods Appl. Mech. Eng., 2017, 320: 335
doi: 10.1016/j.cma.2017.03.005
73
Buchanan D J, John R. Residual stress redistribution in shot peened samples subject to mechanical loading [J]. Mater. Sci. Eng., 2014, A615: 70
74
Zhu L H, Fan X L, Xiao L, et al. Influence of shot peening on the microstructure and high-temperature tensile properties of a powder metallurgy Ni-based superalloy [J]. J. Mater. Sci., 2023, 58: 2838
doi: 10.1007/s10853-023-08182-3
75
Yang J, Liu D X, Ren Z C, et al. Grain growth and fatigue behaviors of GH4169 superalloy subjected to excessive ultrasonic surface rolling process [J]. Mater. Sci. Eng., 2022, A839: 142875
76
Lesyk D A, Dzhemelinskyi V V, Martinez S, et al. Surface shot peening post-processing of Inconel 718 alloy parts printed by laser powder bed fusion additive manufacturing [J]. J. Mater. Eng. Perform., 2021, 30: 6982
doi: 10.1007/s11665-021-06103-6
77
Li L, Liu D J. Complete dissolution of gamma prime via severe plastic deformation in a precipitation-hardened nickel-base superalloy [J]. Mater. Lett., 2021, 284: 128607
doi: 10.1016/j.matlet.2020.128607
78
Colliander M H, Sundell G, Thuvander M. Complete precipitate dissolution during adiabatic shear localisation in a Ni-based superalloy [J]. Philos. Mag. Lett., 2020, 100: 561
doi: 10.1080/09500839.2020.1820595
79
Liao Z R, Polyakov M, Diaz O G, et al. Grain refinement mechanism of nickel-based superalloy by severe plastic deformation—Mechanical machining case [J]. Acta Mater., 2019, 180: 2
doi: 10.1016/j.actamat.2019.08.059
80
Takizawa Y, Sumikawa K, Watanabe K, et al. Incremental feeding high-pressure sliding for grain refinement of large-scale sheets: Application to Inconel 718 [J]. Metall. Mater. Trans., 2018, 49A: 1830
81
Liu Y, Wang L, Yang K Y, et al. Mechanism for superior fatigue performance of warm laser shock peened IN718 superalloy after high-temperature ageing [J]. J. Alloys Compd., 2022, 923: 166340
doi: 10.1016/j.jallcom.2022.166340
82
Buchanan D J, Shepard M J, John R. Retained residual stress profiles in a laser shock‐peened and shot‐peened nickel base superalloy subject to thermal exposure [J]. Int. J. Struct. Integr., 2011, 2: 34
doi: 10.1108/17579861111108590
83
Lu Y, Yang Y L, Zhao J B, et al. Impact on mechanical properties and microstructural response of nickel-based superalloy GH4169 subjected to warm laser shock peening [J]. Materials, 2020, 13: 5172
doi: 10.3390/ma13225172
84
Lu G X, Jin T, Zhou Y Z, et al. Research progress of applications of laser shock processing on superalloys [J]. Chin. J. Nonferrous Met., 2018, 28: 1755
doi: 10.1016/S1003-6326(18)64819-8
Chin K S, Idapalapati S, Ardi D T. Thermal stress relaxation in shot peened and laser peened nickel-based superalloy [J]. J. Mater. Sci. Technol., 2020, 59: 100
doi: 10.1016/j.jmst.2020.03.059
86
Zhou Z, Gill A S, Telang A, et al. Experimental and finite element simulation study of thermal relaxation of residual stresses in laser shock peened IN718 SPF superalloy [J]. Exp. Mech., 2014, 54: 1597
doi: 10.1007/s11340-014-9940-9
87
Gill A, Telang A, Mannava S R, et al. Comparison of mechanisms of advanced mechanical surface treatments in nickel-based superalloy [J]. Mater. Sci. Eng., 2013, A576: 346
88
Gill A S, ZhouZ., Lienert U, et al. High spatial resolution, high energy synchrotron X-ray diffraction characterization of residual strains and stresses in laser shock peened Inconel 718SPF alloy [J]. J. Appl. Phys., 2012, 111: 084904
89
Wang H M, Sun X J, Li X X. Laser shock processing of an austenitic stainless steel and a nickel-base superalloy [J]. J. Mater. Sci. Technol., 2003, 19: 402
90
Zhu H Y, Qu X M, Cao J, et al. Study on stress relaxation characteristics of FGH95 powder superalloy treated by laser shock peening [J]. Mater. Res. Express, 2022, 9: 106502
doi: 10.1088/2053-1591/ac95f9
91
Zhou G N, Zhang Y B, Pantleon W, et al. Quantification of room temperature strengthening of laser shock peened Ni-based superalloy using synchrotron microdiffraction [J]. Mater. Des., 2022, 221: 110948
doi: 10.1016/j.matdes.2022.110948
92
Lu Y, Zhao J B, Qiao H C, et al. A study on the surface morphology evolution of the GH4619 using warm laser shock peening [J]. AIP Adv., 2019, 9: 085030
93
Xiang S, Liu X T, Xu R, et al. Ultrahigh strength in lightweight steel via avalanche multiplication of intermetallic phases and dislocation [J]. Acta Mater., 2023, 242: 118436
doi: 10.1016/j.actamat.2022.118436
94
Lin C H, Tang Y, Yu L W, et al. Oblique laser shock peening effect of the FGH95 superalloy with a PCA and comprehensive index [J]. Appl. Opt., 2022, 61: 2690
doi: 10.1364/AO.450877
pmid: 35471349
95
Gill A S, Telang A, Ye C, et al. Localized plastic deformation and hardening in laser shock peened Inconel alloy 718SPF [J]. Mater. Charact., 2018, 142: 15
doi: 10.1016/j.matchar.2018.05.010
96
Luo S H, He W F, Zhou L C, et al. Aluminizing mechanism on a nickel-based alloy with surface nanostructure produced by laser shock peening and its effect on fatigue strength [J]. Surf. Coat. Technol., 2018, 342: 29
doi: 10.1016/j.surfcoat.2018.02.083