1Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China 2Gaona Aero Material Co., Ltd, Beijing 100081, China
Cite this article:
DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy. Acta Metall Sin, 2023, 59(9): 1159-1172.
The breakthrough application of triple melt technology (vacuum induction melting (VIM) + electroslag remelting (ESR) + vacuum arc remelting (VAR)) for fabricating GH4169 alloy facilitated the optimization of the entire production process of GH4169 disks. This paper summarizes the research progress on the chemical composition, triple melting, homogenization treatment, cogging, disk forging, residual stress control, and quality control system of GH4169 alloy. The breakthrough and large-scale application of triple melting technology have resulted in improved purity of the GH4169 alloy and reduced occurrence probability of metallurgical defects. In addition, the microstructural uniformity and yield of forging bars have been improved by the combination of fast (upsetting and drawing) and radial forging. Furthermore, deformations occurring during the machining and operation of GH4169 disks have been reduced using residual stress control technology. Results related to ultrahigh strength, ultralarge scale, high corrosion resistance, and hydrogen embrittlement characteristics of GH4169 alloy are discussed, and potential future research directions are outlined here.
Fund: National Key Research and Development Program of China(2022YFF0609300);National Key Research and Development Program of China(2017YFA0700703);National Science and Technology Major Project of China(2019-VI-0021-0137)
Fig.1 Evolution processes of sulfur and oxygen element contents of GH4169 alloy
Fig.2 Simulation results of alloy liquid movement in the flow channel
Fig.3 Simulation results of temperature distribution (Tliquidus—liquidus temperature, 1373.3oC; Tsolidus—solidus temperature, 1276.7oC. t1-t8 indicate different time) (a) and tangential stress (b) and axial stress (c) in ingot mold at different time during vacuum induction melting (VIM) pouring
Slag
Domestic
Domestic optimization
Oversea
CaF2
50
55
70
CaO
20
20
15
Al2O3
22
16
15
MgO
5
3
0
TiO2
3
6
0
Table 2 Compositions of GH4169 alloy slag
Fig.4 Quantity densities of different types of inclusions on the edge of electroslag remelting (ESR) ingot of GH4169 alloy
Fig.5 Macrostructures of vacuum arc remelting (VAR) ingot of GH4169 alloy produced by triple melt (a) numerical simulation result (b) actual anatomical result
Fig.6 Freckles formation mechanism diagram[23]
Fig.7 Proportions of inclusion with different sizes in the entire process of triple melt (a) and typical inclusion morphologies and correspording EDS mappings for MgO·Al2O3 core (b) and TiN core (c) in GH4169 alloy
Fig.8 Macrostructure of GH4169 VAR ingot after homogenization
Fig.9 Effects of forging method on the grain size of GH4169 disc by numerical simulation (a) upsetting (b) die forging (c) preforging (d) finish-forging
Fig.10 Schematic of super air cooling equipment for controlling residual stress (a) and design of fluid workpiece field distribution (b) (1—workpiece, 2—rotatable support platform, 3—upper nozzle of air source, 4—lower nozzle of air source, 5—air source, 6—air compressor, 7—slide tooling of workpiece)
Fig.11 Schematic of quality stability of superalloy discs supported by national quality infrastructure (NQI)
Sample
Lab. 1
Lab. 2
Lab. 3
Lab. 4
Lab. 5
Lab. 6
Lab. 7
Error range
1
5.67
5.45
5.48
5.37
5.23
5.45
5.512
0.44
2
5.67
5.53
5.49
5.30
5.26
5.44
5.498
0.41
3
5.66
5.54
5.54
5.36
5.47
5.50
5.506
0.30
4
5.69
5.50
5.52
5.30
5.28
5.47
5.456
0.41
5
5.63
5.51
5.48
5.37
5.39
5.45
5.496
0.26
Table 3 Analysis results of Nb element in GH4169 alloy in different laboratories
1
Eiselstein H L, Tillack D J. The invention and definition of alloy 625 [R]. Warrendale: The Minerals, Metals & Materials Society, 1991
2
Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J]. J. Aeronaut. Mater., 2016, 36(3): 27
Simcock J H. Induction melting [P]. USA Pat, 05012487, 1991
5
Li Z B. New advances in vacuum metallurgy [J]. Vac. Sci. Technol., 1999, 19: 175
doi: 10.1116/1.1322652
李正邦. 真空冶金新进展 [J]. 真空科学与技术, 1999, 19: 175
6
Heaslip L J, McLean A, Sommerville I D. Chemical and Physical Interactions During Transfer Operations [M]. Warrendale: Iron and Steel Society, 1983: 35
7
Morales R D, Díaz-Cruz M, Palfox-Ramos J, et al. Modelling steel flow in a three-strand billet tundish using a turbulence inhibitor [J]. Steel Res., 2001, 72: 11
doi: 10.1002/(ISSN)1869-344Xa
8
Zhang L, Huang Y W, Yang S B, et al. Water modeling of turbulence inhibitor in tundish [J]. Iron Steel, 2002, 37(12): 17
Wang F, Li B K. Analysis of electromagnetic field and Joule heating of electroslag remelting processes [J]. Acta Metall. Sin., 2010, 46: 794
doi: 10.3724/SP.J.1037.2010.00080
Wang Q, He Z, Li B K, et al. A general coupled mathematical model of electromagnetic phenomena, two-phase flow, and heat transfer in electroslag remelting process including conducting in the mold [J]. Metall. Mater. Trans., 2014, 45B: 2425
12
Mills K C, Fox A B. The role of mould fluxes in continuous casting——So simple yet so complex [J]. ISIJ Int., 2003, 43: 1479
doi: 10.2355/isijinternational.43.1479
13
Sun C Y, Guo X M. Electrical conductivity of MO (MO = FeO, NiO)-containing CaO-MgO-SiO2-Al2O3 slag with low basicity [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1648
doi: 10.1016/S1003-6326(11)60909-6
14
Woodside C R, King P E, Nordlund C. Arc distribution during the vacuum arc remelting of Ti-6Al-4V [J]. Metall. Mater. Trans., 2013, 44B: 154
15
Spitans S, Franz H, Scholz H, et al. Numerical simulation of the ingot growth during the vacuum arc remelting process [J]. Magnetohydrodynamics, 2017, 53: 557
doi: 10.22364/mhd
16
Nastac L, Sundarraj S, Yu K O, et al. The stochastic modeling of solidification structures in alloy 718 remelt ingots [J]. JOM, 1998, 50: 30
17
Chen Z Y, Yang S F, Qu J L, et al. Effects of different melting technologies on the purity of superalloy GH4738 [J]. Materials, 2018, 11: 1838
doi: 10.3390/ma11101838
18
Liu H, Deng C, Zhang N, et al. Effect of melting process on Cu content in TC10 ingot [J]. Spec. Steel Technol., 2013, 19(2): 35
Descotes V, Bellot J-P, Perrin-Guérin V, et al. Titanium nitride (TiN) precipitation in a maraging steel during the vacuum arc remelting (VAR) process——Inclusions characterization and modeling [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2016, 143: 012013
20
Shevchenko D M, Ward R M. Liquid metal pool behavior during the vacuum arc remelting of Inconel 718 [J]. Metall. Mater. Trans., 2009, 40B: 263
21
Zhang Y, Li P H, Jia C L, et al. Research progress of melting purification techniques and equipment for cast & wrought superalloy [J]. Mater. Rep., 2018, 32: 1496
Wang X H, Ward R M, Jacobs M H, et al. Effect of variation in process parameters on the formation of freckle in Inconel 718 by vacuum arc remelting [J]. Metall. Mater. Trans., 2008, 39A: 2981
23
Auburtin P, Wang T, Cockcroft S L, et al. Freckle formation and freckle criterion in superalloy castings [J]. Metall. Mater. Trans., 2000, 31B: 801
24
Jackman L A, Maurer G E, Widge S. White spots in superalloys [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warr-endale: TMS, 1994
Grignard J F, Soller A, Jourdan J, et al. On the formation of white-spot defects in a superalloy VAR ingot [J]. Adv. Eng. Mater., 2011, 13: 563
doi: 10.1002/adem.v13.7
27
Wang X, Barratt M D, Ward R M, et al. The effect of VAR process parameters on white spot formation in Inconel 718 [J]. J. Mater. Sci., 2004, 39: 7169
doi: 10.1023/B:JMSC.0000048728.85832.44
28
Zhang W, Lee P D, McLean M. Numerical simulation of dendrite white spot formation during vacuum arc remelting of Inconel 718 [J]. Metall. Mater. Trans., 2002, 33A: 443
29
Cui J J, Li B K, Liu Z Q, et al. Numerical investigation of segregation evolution during the vacuum arc remelting process of Ni-based superalloy ingots [J]. Metals, 2021, 11: 2046
doi: 10.3390/met11122046
30
Li F L, Fu R, Feng D, et al. Microstructure and segregation behavior of Rene88DT alloy prepared by ESR-CDS [J]. Rare Met. Mater. Eng., 2016, 45: 1437
doi: 10.1016/S1875-5372(16)30127-8
31
Wang R T. Numerical simulation of inclusion movement and electrode oxidation in electroslag remelting process [D]. Wuhan: Wuhan University of Science and Technology, 2018
O'Hara E M, Harrison N M, Polomski B K, et al. The effect of inclusions on the high-temperature low-cycle fatigue performance of cast MarBN: Experimental characterisation and computational modelling [J]. Fatigue Fract. Eng. Mater. Struct., 2018, 41: 2288
doi: 10.1111/ffe.v41.11
33
Hu Y, Chen W Q, Wan C J, et al. Effect of deoxidation process on inclusion and fatigue performance of spring steel for automobile suspension [J]. Metall. Mater. Trans., 2018, 49B: 569
34
Ardi D T, Guowei L, Maharjan N, et al. Effects of post-processing route on fatigue performance of laser powder bed fusion Inconel 718 [J]. Addit. Manuf., 2020, 36: 101442
35
Sohrabi M J, Mirzadeh H, Rafiei M. Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy [J]. Vacuum, 2018, 154: 235
doi: 10.1016/j.vacuum.2018.05.019
36
Miao Z J, Shan A D, Wu Y B, et al. Quantitative analysis of homogenization treatment of Inconel 718 superalloy [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1009
doi: 10.1016/S1003-6326(11)60814-5
37
Miao Z J, Shan A D, Lu J, et al. Segregation and diffusion characterisation in two-stage homogenisation of conventional superalloy [J]. Mater. Sci. Technol., 2011, 27: 1551
doi: 10.1179/026708310X12815992418139
38
Jiang S C, Zhang J, Han F. As-cast microstructure characteristics and homogenization treatment of GH4169 alloy [J]. Heat Treat. Met., 2021, 46(2): 109
doi: 10.13251/j.issn.0254-6051.2021.02.019
Thomas A, El-Wahabi M, Cabrera J M, et al. High temperature deformation of Inconel 718 [J]. J. Mater. Process. Technol., 2006, 177: 469
doi: 10.1016/j.jmatprotec.2006.04.072
40
Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
Zhang H J, Li C, Guo Q Y, et al. Delta precipitation in wrought Inconel 718 alloy; The role of dynamic recrystallization [J]. Mater. Charact., 2017, 133: 138
doi: 10.1016/j.matchar.2017.09.032
42
Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
Páramo-Kañetas P J, Ozturk U, Calvo J, et al. Analysis of strain-induced precipitates by delta-processing in Inconel 718 superalloy [J]. Mater. Charact., 2021, 173: 110926
doi: 10.1016/j.matchar.2021.110926
44
Oberwinkler B, Fischersworring-Bunk A, Hüller M, et al. Integrated process modeling for the mechanical properties optimization of direct aged alloy 718 engine disks [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 513
45
Aoki C, Ueno T, Ohno T. Influence of hot working conditions on grain growth behavior of alloy 718 [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 609
46
Qin H L, Zhang R Y, Bi Z N, et al. Study on the evolution of residual stress during ageing treatment in a GH4169 alloy disk [J]. Acta Metall. Sin., 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy [J]. Mater. Sci. Eng., 2019, A742: 493
49
Qin H L, Bi Z N, Yu H Y, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183
50
Qin H L, Bi Z N, Yu H Y, et al. Influence of stress on γ″ precipitation behavior in Inconel 718 during aging [J]. J. Alloys Compd., 2018, 740: 997
doi: 10.1016/j.jallcom.2018.01.030
51
Blaes N, Donth B, Diwo A, et al. Manufacture of large Ni-base ingots and forgings [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 601
52
Zhu J J, Yuan W H. Effect of pretreatment process on microstructure and mechanical properties in Inconel 718 alloy [J]. J. Alloys Compd., 2023: 168707
53
Yadav P C, Shekhar S, Jayabalan B, et al. Controlled precipitation and recrystallization to achieve superior mechanical properties of severely deformed Inconel 718 alloy [J]. Mater. Chem. Phys., 2023, 295: 127098
doi: 10.1016/j.matchemphys.2022.127098
54
Yang X, Chen S N, Wang B X, et al. Superplastic deformation behavior of cold-rolled Inconel 718 alloy at high strain rates [J]. J. Mater. Process. Technol., 2022, 308: 117696
doi: 10.1016/j.jmatprotec.2022.117696
55
Ran R, Wang Y, Zhang Y X, et al. Two-stage annealing treatment to uniformly refine the microstructure, tailor δ precipitates and improve tensile properties of Inconel 718 alloy [J]. J. Alloys Compd., 2022, 927: 166820
doi: 10.1016/j.jallcom.2022.166820
56
Galliano F, Andrieu E, Cloué J M, et al. Effect of temperature on hydrogen embrittlement susceptibility of alloy 718 in light water reactor environment [J]. Int. J. Hydrogen Energy, 2017, 42: 21371
doi: 10.1016/j.ijhydene.2017.06.211
57
Tang R, Liu H D, Wang D Z, et al. Developing progress of oilfield-grade corrosion resistant alloy 718 [J]. Heat Treat. Met., 2018, 43(7): 54
Li G Y, Liu Z Q, Wang B. Study on the infiltration mechanism of tellurium into the Inconel 718 [J]. J. Mater. Sci., 2023, 58: 1966
doi: 10.1007/s10853-023-08150-x
59
Zhang Z B, Moore K L, McMahon G, et al. On the role of precipitates in hydrogen trapping and hydrogen embrittlement of a nickel-based superalloy [J]. Corros. Sci., 2019, 146: 58
doi: 10.1016/j.corsci.2018.10.019
60
Tarzimoghadam Z, Ponge D, Klöwer J, et al. Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation [J]. Acta Mater., 2017, 128: 365
doi: 10.1016/j.actamat.2017.02.059
61
Zhang Z B, Obasi G, Morana R, et al. Hydrogen assisted crack initiation and propagation in a nickel-based superalloy [J]. Acta Mater., 2016, 113: 272
doi: 10.1016/j.actamat.2016.05.003
62
Tarzimoghadam Z, Rohwerder M, Merzlikin S V, et al. Multi-scale and spatially resolved hydrogen mapping in a Ni-Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718 [J]. Acta Mater., 2016, 109: 69
doi: 10.1016/j.actamat.2016.02.053
63
Stenerud G, Wenner S, Olsen J S, et al. Effect of different microstructural features on the hydrogen embrittlement susceptibility of alloy 718 [J]. Int. J. Hydrogen Energy, 2018, 43: 6765
doi: 10.1016/j.ijhydene.2018.02.088
64
Bechtle S, Kumar M, Somerday B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials [J]. Acta Mater., 2009, 57: 4148
doi: 10.1016/j.actamat.2009.05.012
65
Seita M, Hanson J P, Gradečak S, et al. The dual role of coherent twin boundaries in hydrogen embrittlement [J]. Nat. Commun., 2015, 6: 6164
doi: 10.1038/ncomms7164
pmid: 25652438
66
Hanson J P, Bagri A, Lind J, et al. Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725 [J]. Nat. Commun., 2018, 9: 3386
doi: 10.1038/s41467-018-05549-y
pmid: 30140001