Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (9): 1159-1172    DOI: 10.11900/0412.1961.2023.00144
Overview Current Issue | Archive | Adv Search |
Recent Development of Triple Melt GH4169 Alloy
DU Jinhui1,2(), BI Zhongnan1,2, QU Jinglong2
1Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China
2Gaona Aero Material Co., Ltd, Beijing 100081, China
Cite this article: 

DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy. Acta Metall Sin, 2023, 59(9): 1159-1172.

Download:  HTML  PDF(2545KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The breakthrough application of triple melt technology (vacuum induction melting (VIM) + electroslag remelting (ESR) + vacuum arc remelting (VAR)) for fabricating GH4169 alloy facilitated the optimization of the entire production process of GH4169 disks. This paper summarizes the research progress on the chemical composition, triple melting, homogenization treatment, cogging, disk forging, residual stress control, and quality control system of GH4169 alloy. The breakthrough and large-scale application of triple melting technology have resulted in improved purity of the GH4169 alloy and reduced occurrence probability of metallurgical defects. In addition, the microstructural uniformity and yield of forging bars have been improved by the combination of fast (upsetting and drawing) and radial forging. Furthermore, deformations occurring during the machining and operation of GH4169 disks have been reduced using residual stress control technology. Results related to ultrahigh strength, ultralarge scale, high corrosion resistance, and hydrogen embrittlement characteristics of GH4169 alloy are discussed, and potential future research directions are outlined here.

Key words:  GH4169 alloy      triple melt      upsetting and drawing      radial forging      residual stress     
Received:  31 March 2023     
ZTFLH:  TG113.12  
Fund: National Key Research and Development Program of China(2022YFF0609300);National Key Research and Development Program of China(2017YFA0700703);National Science and Technology Major Project of China(2019-VI-0021-0137)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00144     OR     https://www.ams.org.cn/EN/Y2023/V59/I9/1159

GradeCCrNiCoNbMoAlTiFe
Normal0.015-0.06017.00-21.0050.00-55.00≤ 1.004.75-5.502.80-3.300.30-0.700.75-1.15Bal.
Premium0.015-0.06017.00-21.0050.00-55.00≤ 1.005.00-5.502.80-3.300.30-0.700.75-1.15Bal.
High purity0.012-0.03617.00-19.0052.00-55.00≤ 1.005.20-5.552.80-3.150.35-0.650.75-1.1516.00-19.00
GradeSiCuMnMgPSNOB
Normal≤ 0.35≤ 0.30≤ 0.35≤ 0.010≤ 0.015≤ 0.0080--≤ 0.006
Premium≤ 0.35≤ 0.30≤ 0.35≤ 0.005≤ 0.015≤ 0.00200.010.0050≤ 0.006
High purity≤ 0.35≤ 0.30≤ 0.35≤ 0.0030.007-0.015≤ 0.00100.010.0025≤ 0.006
Table 1  Chemical compositions of GH4169 alloy
Fig.1  Evolution processes of sulfur and oxygen element contents of GH4169 alloy
Fig.2  Simulation results of alloy liquid movement in the flow channel
Fig.3  Simulation results of temperature distribution (Tliquidus—liquidus temperature, 1373.3oC; Tsolidus—solidus temperature, 1276.7oC. t1-t8 indicate different time) (a) and tangential stress (b) and axial stress (c) in ingot mold at different time during vacuum induction melting (VIM) pouring
SlagDomesticDomestic optimizationOversea
CaF2505570
CaO202015
Al2O3221615
MgO530
TiO2360
Table 2  Compositions of GH4169 alloy slag
Fig.4  Quantity densities of different types of inclusions on the edge of electroslag remelting (ESR) ingot of GH4169 alloy
Fig.5  Macrostructures of vacuum arc remelting (VAR) ingot of GH4169 alloy produced by triple melt
(a) numerical simulation result
(b) actual anatomical result
Fig.6  Freckles formation mechanism diagram[23]
Fig.7  Proportions of inclusion with different sizes in the entire process of triple melt (a) and typical inclusion morphologies and correspording EDS mappings for MgO·Al2O3 core (b) and TiN core (c) in GH4169 alloy
Fig.8  Macrostructure of GH4169 VAR ingot after homogenization
Fig.9  Effects of forging method on the grain size of GH4169 disc by numerical simulation
(a) upsetting (b) die forging
(c) preforging (d) finish-forging
Fig.10  Schematic of super air cooling equipment for controlling residual stress (a) and design of fluid workpiece field distribution (b) (1—workpiece, 2—rotatable support platform, 3—upper nozzle of air source, 4—lower nozzle of air source, 5—air source, 6—air compressor, 7—slide tooling of workpiece)
Fig.11  Schematic of quality stability of superalloy discs supported by national quality infrastructure (NQI)
SampleLab. 1Lab. 2Lab. 3Lab. 4Lab. 5Lab. 6Lab. 7Error range
15.675.455.485.375.235.455.5120.44
25.675.535.495.305.265.445.4980.41
35.665.545.545.365.475.505.5060.30
45.695.505.525.305.285.475.4560.41
55.635.515.485.375.395.455.4960.26
Table 3  Analysis results of Nb element in GH4169 alloy in different laboratories
1 Eiselstein H L, Tillack D J. The invention and definition of alloy 625 [R]. Warrendale: The Minerals, Metals & Materials Society, 1991
2 Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J]. J. Aeronaut. Mater., 2016, 36(3): 27
杜金辉, 赵光普, 邓 群 等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27
3 Du J H, Lv X D, Deng Q, et al. Progress in GH4169 alloy development [J]. Mater. China, 2012, 31(12): 12
杜金辉, 吕旭东, 邓 群 等. GH4169合金研制进展 [J]. 中国材料进展, 2012, 31(12): 12
4 Simcock J H. Induction melting [P]. USA Pat, 05012487, 1991
5 Li Z B. New advances in vacuum metallurgy [J]. Vac. Sci. Technol., 1999, 19: 175
doi: 10.1116/1.1322652
李正邦. 真空冶金新进展 [J]. 真空科学与技术, 1999, 19: 175
6 Heaslip L J, McLean A, Sommerville I D. Chemical and Physical Interactions During Transfer Operations [M]. Warrendale: Iron and Steel Society, 1983: 35
7 Morales R D, Díaz-Cruz M, Palfox-Ramos J, et al. Modelling steel flow in a three-strand billet tundish using a turbulence inhibitor [J]. Steel Res., 2001, 72: 11
doi: 10.1002/(ISSN)1869-344Xa
8 Zhang L, Huang Y W, Yang S B, et al. Water modeling of turbulence inhibitor in tundish [J]. Iron Steel, 2002, 37(12): 17
张 立, 黄耀文, 杨时标 等. 连铸中间包湍流控制器水模实验研究 [J]. 钢铁, 2002, 37(12): 17
9 Yuan J B, Yu X B, Chang E, et al. Phyical modeling of melt in three strand tundish of continuous casting [J]. Steelmaking, 2003, 19(1): 42
袁己百, 于学斌, 常 锷 等. 三流连铸中间包的物理模拟 [J]. 炼钢, 2003, 19(1): 42
10 Wang F, Li B K. Analysis of electromagnetic field and Joule heating of electroslag remelting processes [J]. Acta Metall. Sin., 2010, 46: 794
doi: 10.3724/SP.J.1037.2010.00080
王 芳, 李宝宽. 电渣重熔过程中的电磁场和Joule热分析 [J]. 金属学报, 2010, 46: 794
11 Wang Q, He Z, Li B K, et al. A general coupled mathematical model of electromagnetic phenomena, two-phase flow, and heat transfer in electroslag remelting process including conducting in the mold [J]. Metall. Mater. Trans., 2014, 45B: 2425
12 Mills K C, Fox A B. The role of mould fluxes in continuous casting——So simple yet so complex [J]. ISIJ Int., 2003, 43: 1479
doi: 10.2355/isijinternational.43.1479
13 Sun C Y, Guo X M. Electrical conductivity of MO (MO = FeO, NiO)-containing CaO-MgO-SiO2-Al2O3 slag with low basicity [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1648
doi: 10.1016/S1003-6326(11)60909-6
14 Woodside C R, King P E, Nordlund C. Arc distribution during the vacuum arc remelting of Ti-6Al-4V [J]. Metall. Mater. Trans., 2013, 44B: 154
15 Spitans S, Franz H, Scholz H, et al. Numerical simulation of the ingot growth during the vacuum arc remelting process [J]. Magnetohydrodynamics, 2017, 53: 557
doi: 10.22364/mhd
16 Nastac L, Sundarraj S, Yu K O, et al. The stochastic modeling of solidification structures in alloy 718 remelt ingots [J]. JOM, 1998, 50: 30
17 Chen Z Y, Yang S F, Qu J L, et al. Effects of different melting technologies on the purity of superalloy GH4738 [J]. Materials, 2018, 11: 1838
doi: 10.3390/ma11101838
18 Liu H, Deng C, Zhang N, et al. Effect of melting process on Cu content in TC10 ingot [J]. Spec. Steel Technol., 2013, 19(2): 35
刘 华, 邓 超, 张 娜 等. 熔炼工艺对TC10铸锭中Cu含量的影响 [J]. 特钢技术, 2013, 19(2): 35
19 Descotes V, Bellot J-P, Perrin-Guérin V, et al. Titanium nitride (TiN) precipitation in a maraging steel during the vacuum arc remelting (VAR) process——Inclusions characterization and modeling [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2016, 143: 012013
20 Shevchenko D M, Ward R M. Liquid metal pool behavior during the vacuum arc remelting of Inconel 718 [J]. Metall. Mater. Trans., 2009, 40B: 263
21 Zhang Y, Li P H, Jia C L, et al. Research progress of melting purification techniques and equipment for cast & wrought superalloy [J]. Mater. Rep., 2018, 32: 1496
张 勇, 李佩桓, 贾崇林 等. 变形高温合金纯净熔炼设备及工艺研究进展 [J]. 材料导报, 2018, 32: 1496
22 Wang X H, Ward R M, Jacobs M H, et al. Effect of variation in process parameters on the formation of freckle in Inconel 718 by vacuum arc remelting [J]. Metall. Mater. Trans., 2008, 39A: 2981
23 Auburtin P, Wang T, Cockcroft S L, et al. Freckle formation and freckle criterion in superalloy castings [J]. Metall. Mater. Trans., 2000, 31B: 801
24 Jackman L A, Maurer G E, Widge S. White spots in superalloys [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warr-endale: TMS, 1994
25 Takachio K, Nonomura T. Improvement in the quality of superalloy VAR ingots [J]. ISIJ Int., 1996, 36: S85
doi: 10.2355/isijinternational.36.Suppl_S85
26 Grignard J F, Soller A, Jourdan J, et al. On the formation of white-spot defects in a superalloy VAR ingot [J]. Adv. Eng. Mater., 2011, 13: 563
doi: 10.1002/adem.v13.7
27 Wang X, Barratt M D, Ward R M, et al. The effect of VAR process parameters on white spot formation in Inconel 718 [J]. J. Mater. Sci., 2004, 39: 7169
doi: 10.1023/B:JMSC.0000048728.85832.44
28 Zhang W, Lee P D, McLean M. Numerical simulation of dendrite white spot formation during vacuum arc remelting of Inconel 718 [J]. Metall. Mater. Trans., 2002, 33A: 443
29 Cui J J, Li B K, Liu Z Q, et al. Numerical investigation of segregation evolution during the vacuum arc remelting process of Ni-based superalloy ingots [J]. Metals, 2021, 11: 2046
doi: 10.3390/met11122046
30 Li F L, Fu R, Feng D, et al. Microstructure and segregation behavior of Rene88DT alloy prepared by ESR-CDS [J]. Rare Met. Mater. Eng., 2016, 45: 1437
doi: 10.1016/S1875-5372(16)30127-8
31 Wang R T. Numerical simulation of inclusion movement and electrode oxidation in electroslag remelting process [D]. Wuhan: Wuhan University of Science and Technology, 2018
汪瑞婷. 电渣重熔过程中夹杂物运动行为以及电极氧化的数值模拟 [D]. 武汉: 武汉科技大学, 2018
32 O'Hara E M, Harrison N M, Polomski B K, et al. The effect of inclusions on the high-temperature low-cycle fatigue performance of cast MarBN: Experimental characterisation and computational modelling [J]. Fatigue Fract. Eng. Mater. Struct., 2018, 41: 2288
doi: 10.1111/ffe.v41.11
33 Hu Y, Chen W Q, Wan C J, et al. Effect of deoxidation process on inclusion and fatigue performance of spring steel for automobile suspension [J]. Metall. Mater. Trans., 2018, 49B: 569
34 Ardi D T, Guowei L, Maharjan N, et al. Effects of post-processing route on fatigue performance of laser powder bed fusion Inconel 718 [J]. Addit. Manuf., 2020, 36: 101442
35 Sohrabi M J, Mirzadeh H, Rafiei M. Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy [J]. Vacuum, 2018, 154: 235
doi: 10.1016/j.vacuum.2018.05.019
36 Miao Z J, Shan A D, Wu Y B, et al. Quantitative analysis of homogenization treatment of Inconel 718 superalloy [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1009
doi: 10.1016/S1003-6326(11)60814-5
37 Miao Z J, Shan A D, Lu J, et al. Segregation and diffusion characterisation in two-stage homogenisation of conventional superalloy [J]. Mater. Sci. Technol., 2011, 27: 1551
doi: 10.1179/026708310X12815992418139
38 Jiang S C, Zhang J, Han F. As-cast microstructure characteristics and homogenization treatment of GH4169 alloy [J]. Heat Treat. Met., 2021, 46(2): 109
doi: 10.13251/j.issn.0254-6051.2021.02.019
蒋世川, 张 健, 韩 福. GH4169合金铸态组织特征及均匀化处理工艺 [J]. 金属热处理, 2021, 46(2): 109
doi: 10.13251/j.issn.0254-6051.2021.02.019
39 Thomas A, El-Wahabi M, Cabrera J M, et al. High temperature deformation of Inconel 718 [J]. J. Mater. Process. Technol., 2006, 177: 469
doi: 10.1016/j.jmatprotec.2006.04.072
40 Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
刘永长, 郭倩颖, 李 冲 等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
41 Zhang H J, Li C, Guo Q Y, et al. Delta precipitation in wrought Inconel 718 alloy; The role of dynamic recrystallization [J]. Mater. Charact., 2017, 133: 138
doi: 10.1016/j.matchar.2017.09.032
42 Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
刘永长, 张宏军, 郭倩颖 等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
43 Páramo-Kañetas P J, Ozturk U, Calvo J, et al. Analysis of strain-induced precipitates by delta-processing in Inconel 718 superalloy [J]. Mater. Charact., 2021, 173: 110926
doi: 10.1016/j.matchar.2021.110926
44 Oberwinkler B, Fischersworring-Bunk A, Hüller M, et al. Integrated process modeling for the mechanical properties optimization of direct aged alloy 718 engine disks [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 513
45 Aoki C, Ueno T, Ohno T. Influence of hot working conditions on grain growth behavior of alloy 718 [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 609
46 Qin H L, Zhang R Y, Bi Z N, et al. Study on the evolution of residual stress during ageing treatment in a GH4169 alloy disk [J]. Acta Metall. Sin., 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
秦海龙, 张瑞尧, 毕中南 等. GH4169合金圆盘时效过程残余应力的演化规律研究 [J]. 金属学报, 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
47 Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
毕中南, 秦海龙, 董志国 等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160
48 Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy [J]. Mater. Sci. Eng., 2019, A742: 493
49 Qin H L, Bi Z N, Yu H Y, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183
50 Qin H L, Bi Z N, Yu H Y, et al. Influence of stress on γ″ precipitation behavior in Inconel 718 during aging [J]. J. Alloys Compd., 2018, 740: 997
doi: 10.1016/j.jallcom.2018.01.030
51 Blaes N, Donth B, Diwo A, et al. Manufacture of large Ni-base ingots and forgings [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 601
52 Zhu J J, Yuan W H. Effect of pretreatment process on microstructure and mechanical properties in Inconel 718 alloy [J]. J. Alloys Compd., 2023: 168707
53 Yadav P C, Shekhar S, Jayabalan B, et al. Controlled precipitation and recrystallization to achieve superior mechanical properties of severely deformed Inconel 718 alloy [J]. Mater. Chem. Phys., 2023, 295: 127098
doi: 10.1016/j.matchemphys.2022.127098
54 Yang X, Chen S N, Wang B X, et al. Superplastic deformation behavior of cold-rolled Inconel 718 alloy at high strain rates [J]. J. Mater. Process. Technol., 2022, 308: 117696
doi: 10.1016/j.jmatprotec.2022.117696
55 Ran R, Wang Y, Zhang Y X, et al. Two-stage annealing treatment to uniformly refine the microstructure, tailor δ precipitates and improve tensile properties of Inconel 718 alloy [J]. J. Alloys Compd., 2022, 927: 166820
doi: 10.1016/j.jallcom.2022.166820
56 Galliano F, Andrieu E, Cloué J M, et al. Effect of temperature on hydrogen embrittlement susceptibility of alloy 718 in light water reactor environment [J]. Int. J. Hydrogen Energy, 2017, 42: 21371
doi: 10.1016/j.ijhydene.2017.06.211
57 Tang R, Liu H D, Wang D Z, et al. Developing progress of oilfield-grade corrosion resistant alloy 718 [J]. Heat Treat. Met., 2018, 43(7): 54
唐 瑞, 刘海定, 王东哲 等. 油气工程用镍基耐蚀合金718的研究进展 [J]. 金属热处理, 2018, 43(7): 54
58 Li G Y, Liu Z Q, Wang B. Study on the infiltration mechanism of tellurium into the Inconel 718 [J]. J. Mater. Sci., 2023, 58: 1966
doi: 10.1007/s10853-023-08150-x
59 Zhang Z B, Moore K L, McMahon G, et al. On the role of precipitates in hydrogen trapping and hydrogen embrittlement of a nickel-based superalloy [J]. Corros. Sci., 2019, 146: 58
doi: 10.1016/j.corsci.2018.10.019
60 Tarzimoghadam Z, Ponge D, Klöwer J, et al. Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation [J]. Acta Mater., 2017, 128: 365
doi: 10.1016/j.actamat.2017.02.059
61 Zhang Z B, Obasi G, Morana R, et al. Hydrogen assisted crack initiation and propagation in a nickel-based superalloy [J]. Acta Mater., 2016, 113: 272
doi: 10.1016/j.actamat.2016.05.003
62 Tarzimoghadam Z, Rohwerder M, Merzlikin S V, et al. Multi-scale and spatially resolved hydrogen mapping in a Ni-Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718 [J]. Acta Mater., 2016, 109: 69
doi: 10.1016/j.actamat.2016.02.053
63 Stenerud G, Wenner S, Olsen J S, et al. Effect of different microstructural features on the hydrogen embrittlement susceptibility of alloy 718 [J]. Int. J. Hydrogen Energy, 2018, 43: 6765
doi: 10.1016/j.ijhydene.2018.02.088
64 Bechtle S, Kumar M, Somerday B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials [J]. Acta Mater., 2009, 57: 4148
doi: 10.1016/j.actamat.2009.05.012
65 Seita M, Hanson J P, Gradečak S, et al. The dual role of coherent twin boundaries in hydrogen embrittlement [J]. Nat. Commun., 2015, 6: 6164
doi: 10.1038/ncomms7164 pmid: 25652438
66 Hanson J P, Bagri A, Lind J, et al. Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725 [J]. Nat. Commun., 2018, 9: 3386
doi: 10.1038/s41467-018-05549-y pmid: 30140001
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] ZHANG Weidong, CUI Yu, LIU Li, WANG Wenquan, LIU Rui, LI Rui, WANG Fuhui. Corrosion Behavior of GH4169 Alloy in NaCl Solution Spray Environment at 600oC[J]. 金属学报, 2023, 59(11): 1475-1486.
[6] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[7] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[8] ZHANG Xinfang, XIANG Siqi, YI Kun, GUO Jingdong. Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current[J]. 金属学报, 2022, 58(5): 581-598.
[9] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[10] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[11] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[12] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[13] JIANG Lin, ZHANG Liang, LIU Zhiquan. Effects of Al Interlayer and Ni(V) Transition Layer on the Welding Residual Stress of Co/Al/Cu Sandwich Target Assembly[J]. 金属学报, 2020, 56(10): 1433-1440.
[14] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
[15] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
No Suggested Reading articles found!