INFLUENCE OF TEMPERATURE ON LOW-CYCLE FATIGUE BEHAVIOR OF INCONEL 625 NICKEL-BASED SUPERALLOY WELDING JOINT
WANG Yuanyuansup1, CHEN Lijia1(), WANG Baosen2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870 2 Institute for Welding and Surface Technology of R&D Center, Baoshan Iron & Steel Co. LTD Research Institute, Shanghai 201900
Cite this article:
WANG Yuanyuan, CHEN Lijia, WANG Baosen. INFLUENCE OF TEMPERATURE ON LOW-CYCLE FATIGUE BEHAVIOR OF INCONEL 625 NICKEL-BASED SUPERALLOY WELDING JOINT. Acta Metall Sin, 2014, 50(12): 1485-1490.
The low-cycle fatigue tests of Inconel 625 nickel-based superalloy welding joints at 25 and 760 ℃ were performed . The strain-fatigue life data and cyclic stress-strain data were analyzed to determine the strain fatigue parameters of Inconel 625 superalloy welding joints. The result showed that the relationship between elastic strain amplitude, plastic strain amplitude and reversals to failure could be described by Basquin and Coffin-Manson equations, respectively. Under the strain control, the continuous cyclic softening was observed at 25 ℃, however, the cyclic hardening appeared at 760 ℃. At 25 ℃, the fatigue crack of Inconel 625 superalloy welding joints initiated transgranularly at the specimen surface and propagated in the transgranular mode. Differently, at 760 ℃, the fatigue crack initiated transgranularly at the specimen surface, but propagated in mixed transgranular and intergranular modes.
Fig.1 Cyclic stress response curves of Inconel 625 alloy welding joint under different strain amplitudes at 25 ℃ (a) and 760 ℃ (b)
Fig.2 Total stain amplitude versus fatigue life curves of Inconel 625 alloy welding joint at different temperatures
Fig.3 Plastic (a) and elastic (b) strain amplitudes versus reversals to failure curves for Inconel 625 alloy welding joint at 25 and 760 ℃
Temperature / ℃
/ %
c
/ MPa
b
K' / MPa
n'
25
105.2
-0.699
1891.1
-1.148
8124.6
0.487
760
505.6
-0.105
1332.6
-0.143
972.6
0.106
Table 1 Strain fatigue parameters of Inconel 625 alloy welding joint at different temperatures
Fig.4 Cyclic stress-strain curves for Inconel 625 welding joint
Fig.5 Micrographs of fatigue fracture surfaces at 25 ℃ for Inconel 625 alloy welding joint (The arrow indicates the surface of specimen )
Fig.6 Micrographs of fatigue fracture surfaces at 760 ℃ for Inconel 625 alloy welding joint (The arrows indicate the surfaces; Det/2—total strain amplitude)
Fig.7 Microstructures of Inconel 625 alloy welding joint after low-cycle fatigue deformation under strain amplitudes of 0.4% (a) and 1.0% (b) at 25 ℃ (The inset in Fig.7a shows the corresponding SAED pattern)
Fig.8 Microstructures of Inconel 625 alloy welding joint after low-cycle fatigue deformation under strain amplitudes of 0.25% (a) and 0.4% (b) at 760 ℃ (The inset in Fig.8b shows the corresponding SAED pattern)
[1]
Yan S C, Cheng M, Zhang S H, Zhang H Y, Zhang W H, Zhang L W. Chin J Mater Res, 2010; 24: 239
Guo Y, Hou S F, Zhou R C. J Chin Soc Power Eng, 2010; 30: 966
(郭 岩, 侯淑芳, 周荣灿. 动力工程学报, 2010; 30: 966)
[7]
Li W Y, Liu H F, Wang T, Zhao S Q. Mater Mech Eng, 2008; 32(7): 46
(李维银, 刘红飞, 王 婷, 赵双群. 机械工程材料, 2008; 32(7): 46)
[8]
Huang Z W, Yuan F H, Wang Z G, Zhu S J, Wang F G. Acta Metall Sin, 2007; 43: 678
(黄志伟, 袁福河, 王中光, 朱世杰, 王富岗. 金属学报, 2007; 43: 678)
[9]
Chen L J, Wu W, Liaw P K. Acta Metall Sin, 2006; 42: 952
(陈立佳, 吴 崴, Liaw P K. 金属学报, 2006; 42: 952)
[10]
Chen L J, Wang Z G, Yao G, Tian J F. Acta Metall Sin, 1999; 35:1144
(陈立佳, 王中光, 姚 戈, 田继丰. 金属学报, 1999; 35: 1144)
[11]
Lord D C, Coffin L F. Metall Trans, 1973; 4: 1647
[12]
Antolovich S D, Liu S, Baur R. Metall Trans, 1981; 12A: 473
[13]
Reuchet J, Remy L. Mater Sci Eng, 1983; A58: 19
[14]
Rao K B S, Schiffers H, Schuster H, Nickel H. Metall Trans, 1988; 19A: 359
[15]
Valsan M, Shastry D H, Rao K B, Mannan S L. Metall Trans, 1994; 25A: 159
[16]
Li S X, Smith D J. Fatigue Fract Eng Mater Struct, 1995; 18: 631
[17]
Hwang S K, Lee H N, Yoon B H. Metall Trans, 1989; 20: 2793
[18]
Liu Y, Chen L J, Wang Z G. Acta Metall Sin, 1999; 35: 955
(刘 毅, 陈立佳, 王中光. 金属学报, 1999; 35: 955)
[19]
Hwang S K, Lee H N, Yoon B H. Metall Trans, 1989; 20: 2793
[20]
Worithem D W, Robertson I M, Leckie F A, Socie D F, Altstetter C J. Metall Trans, 1990; 21: 3215
[21]
Leverant G R, Kear B H. Metall Trans, 1970; 1: 491
[22]
Kim T K, Yu Y, Jeon T Y. Metall Trans, 1992; 23: 2581
[23]
Link T, Feller-Kniepmeier M. Metall Trans, 1992; 23: 99
[24]
Carry C S, Strudel J L. Acta Metall, 1977; 25: 767
[25]
Carry C S, Strudel J L. Acta Metall, 1978; 26: 859
[26]
Portella P D, Bertram A, Fahlbusch E, Frenz H, Kinder J. In: Lutjering G, Mowalk H eds., Proceedings of the Sixth International Fatigue Congress, 1996: 795
[27]
Henderson P J, Lindblom J. Scr Mater, 1997; 37: 491
[28]
Zhang J H, Hu Z Q, Xu Y B, Wang Z G. Metall Trans, 1992; 23: 1253
[29]
Monier C, Bertrand J P, Trichet M F, Cornet M. Mater Sci Eng, 1994; A188: 133