Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review
HAN Weizhong(), LU Yan, ZHANG Yuheng
State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article:
HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review. Acta Metall Sin, 2023, 59(3): 335-348.
Body-centered-cubic (bcc)-structured metals have excellent physical properties, such as high melting points, high strength and excellent creep resistance, radiation tolerance, and good compatibility with liquid metals, which are widely used in high-tech fields, such as nuclear reactors, satellites, aircraft, rockets, and engines. However, their low-temperature brittleness and ductile-to-brittle transition characteristics limit their applications. Therefore, a deep understanding of the ductile-to-brittle transition mechanism is of great significance for regulating the ductile-to-brittle transition behavior of bcc-structured metals. In this review, taking bcc-structured metals as an example, the history of the ductile-to-brittle transition investigations in bcc metals was retrospected, the main research progress on this topic was introduced, the newly developed methods to tune the ductile-to-brittle transition temperature of metals was discussed, and the key points to be focused on in the future was listed.
Fund: National Natural Science Foundation of China(51971170);National Natural Science Foundation of China(51922082);Programme of Introducing Talents of Discipline to Universities(BP0618008)
Fig.1 Different methods for measuring the ductile-to-brittle transition temperature (DBTT) (a) DBTT measured by Charpy test[56] (L is longitudinal, T is long transverse, and S is short transverse. The first letter (L or T) designates the direction normal to the crack plane, and the second letter (S) the expected direction of crack propagation) (b) DBTT measured by bending test[3] (Filled symbols represent fracture toughnesses (left axis-K), and open symbols represent stresses at failure, which are normalized by crack length (a) for compatibility with the fracture toughness scale (right axis-σf(a)) (c) DBTT measured by small-punch (SP) test (TSP)[34] (d) DBTT measured by nanoindentation[16]
Fig.2 The atomic core structures of the a' / 2[111] screw dislocation in body-centered cubic metals[61] (a'—lattice constant)
Fig.3 Double-kink assisted migration of screw dislocation under thermal activation[30] (Up—Peierls barrier, τg—time constant for generating a kink pair, τm—time constant for moving the kinks to the extent of the dislocation line, νs—screw dislocation velocity)
Fig.4 Determination of DBTT according to variation of ductile and brittle fracture probabilities with respect to the inverse of temperature[74]
Fig.5 Dislocation structures in rolled tungsten at different testing temperatures[34] ( b —Burgers vecter) (a) pre-existing dislocations before testing (b) below DBTT (c) at DBTT (d) above DBTT
Fig.6 Mechanism of the relative mobility of the screw versus edge dislocations controls the DBT in metals[16] (a) dislocation relative mobility determines the efficiency of dislocation source (TC—critical temperature, ve—edge dislocation velocity, αDBT—the α value at DBTT, α—velocity ratio of screw dislocation and edge dislocation, t0—time before dislocation bow out, t1—time after dislocation bow out) (b) relative mobility of screw versus edge dislocations with temperature for Cr, Al, W, and Fe (c) bowing out an edge dislocation to form a half loop (r—dislocation source radius) (d) bowing out the half loop if vs = 0 (x—distance moved by edge dislocation) (e) bowing out the half loop with side glide (vs > 0) (y—distance moved by screw dislocation, Aedge—region swept by the edge dislocation, Ascrew—region swept by the screw dislocation)
1
Christian J W. Some surprising features of the plastic deformation of body-centered cubic metals and alloys [J]. Metall. Trans., 1983, 14A: 1237
2
Finnie I, Mayville R A. Historical aspects in our understanding of the ductile-brittle transition in steels [J]. J. Eng. Mater. Technol., 1990, 112: 56
3
Gumbsch P, Riedle J, Hartmaier A, et al. Controlling factors for the brittle-to-ductile transition in tungsten single crystals [J]. Science, 1998, 282: 1293
4
Samuels J, Roberts S G, Hirsch P B. The brittle-to-ductile transition in silicon [J]. Mater. Sci. Eng., 1988, A105-106: 39
5
Hirsch P B, Roberts S G, Samuels J. The brittle-ductile transition in silicon. II. Interpretation [J]. Proc. Roy. Soc., 1989, 421A: 25
6
Brede M. The brittle-to-ductile transition in silicon [J]. Acta Metall. Mater., 1993, 41: 211
7
Serbena F C, Roberts S G. The brittle-to-ductile transition in germanium [J]. Acta Metall. Mater., 1994, 42: 2505
8
Franco A, Roberts S G, Warren P D. Fracture toughness, surface flaw sizes and flaw densities in Al2O 3 [J]. Acta Mater., 1997, 45: 1009
9
Ortner S R. The ductile-to-brittle transition in steels controlled by particle cracking [J]. Fatigue Fract. Eng. Mater. Struct., 2006, 29: 752
10
Sharma T, Kumar N N, Mondal R, et al. Ductile-to-brittle transition in low-alloy steel: A combined experimental and numerical investigation [J]. J. Mater. Eng. Perform., 2019, 28: 4275
11
Li L, Jia Z W, Zhang Y F, et al. Ductile-brittle transition temperature of a grain-oriented silicon steel and its influencing factors [J]. Heat Treat. Met., 2021, 46(12): 214
Joseph T D, Tanaka M, Wilkinson A J, et al. Brittle-ductile transitions in vanadium and iron-chromium [J]. J. Nucl. Mater., 2007, 367-370: 637
13
Zhang J, Han W Z. Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium [J]. Acta Mater., 2020, 196: 122
14
Henderson F, Quaass S T, Wain H L. The fabrication of chromium and some dilute chromium-base alloys [J]. J. Inst. Met., 1954, 83: 4400440
15
Gilbert A, Reid C N, Hahn G T. Observation on the fracture of chromium [J]. J. Inst. Met., 1963, 92: 351
16
Lu Y, Zhang Y H, Ma E, et al. Relative mobility of screw versus edge dislocations controls the ductile-to-brittle transition in metals [J]. Proc. Natl. Acad. Sci. USA, 2021, 118: e2110596118
17
Passmore E M. Correlation of temperature and grain size effects in the ductile-brittle transition of molybdenum [J]. Philos. Mag., 1965, 11A: 441
18
Cox B L, Wiffen F W. The ductility in bending of molybdenum alloys irradiated between 425 and 1000oC [J]. J. Nucl. Mater., 1979, 85-86: 901
19
Johnson A A. The ductile-brittle transition in body-centred cubic transition metals [J]. Philos. Mag., 1962, 7A: 177
20
Gumbsch P. Brittle fracture and the brittle-to-ductile transition of tungsten [J]. J. Nucl. Mater., 2003, 323: 304
21
Tarleton E, Roberts S G. Dislocation dynamic modelling of the brittle-ductile transition in tungsten [J]. Philos. Mag., 2009, 89: 2759
22
Giannattasio A, Tanaka M, Joseph T D, et al. An empirical correlation between temperature and activation energy for brittle-to-ductile transitions in single-phase materials [J]. Phys. Scr., 2007, 2007: 87
23
Giannattasio A, Roberts S G. Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten [J]. Philos. Mag., 2007, 87: 2589
24
Giannattasio A, Yao Z, Tarleton E, et al. Brittle-ductile transitions in polycrystalline tungsten [J]. Philos. Mag., 2010, 90: 3947
25
Rieth M, Hoffmann A. Influence of microstructure and notch fabrication on impact bending properties of tungsten materials [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 679
26
Xie Z M, Liu R, Miao S, et al. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature [J]. Sci. Rep., 2015, 5: 16014
27
Shen T L, Dai Y, Lee Y. Microstructure and tensile properties of tungsten at elevated temperatures [J]. J. Nucl. Mater., 2016, 468: 348
28
Ren C, Fang Z Z, Koopman M, et al. Methods for improving ductility of tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 170
29
Bonnekoh C, Hoffmann A, Reiser J. The brittle-to-ductile transition in cold rolled tungsten: On the decrease of the brittle-to-ductile transition by 600 K to -65oC [J]. Int. J. Refract. Met. Hard Mater., 2018, 71: 181
30
Butler B G, Paramore J D, Ligda J P, et al. Mechanisms of deformation and ductility in tungsten—A review [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 248
31
Bonk S, Hoffmann J, Hoffmann A, et al. Cold rolled tungsten (W) plates and foils: Evolution of the tensile properties and their indication towards deformation mechanisms [J]. Int. J. Refract. Met. Hard Mater., 2018, 70: 124
32
Bonnekoh C, Jäntsch U, Hoffmann J, et al. The brittle-to-ductile transition in cold rolled tungsten plates: Impact of crystallographic texture, grain size and dislocation density on the transition temperature [J]. Int. J. Refract. Met. Hard Mater., 2019, 78: 146
33
Geng X, Luo G N, Wang W J, et al. Measurement of ductile-brittle transition temperature of tungsten materials by four-point bending method and its comparison with other methods [J]. Rare Met. Mater. Eng., 2021, 50: 4089
Zhang Y H, Han W Z. Mechanism of brittle-to-ductile transition in tungsten under small-punch testing [J]. Acta Mater., 2021, 220: 117332
35
Pszonka A. On the ductile-brittle transition of polycrystalline zinc [J]. Scr. Metall., 1974, 8: 81
36
Booth A S, Roberts S G. The brittle-ductile transition in γ-TiAl single crystals [J]. Acta Mater., 1997, 45: 1045
37
Ebrahimi F, Hoyle T G. Brittle-to-ductile transition in polycrystalline NiAl [J]. Acta Mater., 1997, 45: 4193
38
Ebrahimi F, Shrivastava S. Brittle-to-ductile transition in NiAl single crystal [J]. Acta Mater., 1998, 46: 1493
39
Li L L, Su Y Q, Beyerlein I J, et al. Achieving room-temperature brittle-to-ductile transition in ultrafine layered Fe-Al alloys [J]. Sci. Adv., 2020, 6: eabb6658
40
Li L L, Beyerlein I J, Han W Z. Interface-facilitated stable plasticity in ultra-fine layered FeAl/FeAl2 micro-pillar at high temperature [J]. J. Mater. Sci. Technol., 2021, 73: 61
41
Nikolaev Y V, Kolesov V S, Zubarev P V, et al. Molybdenum and tungsten single crystal alloys with abnormally high creep strength for space nuclear power and propulsion systems [A]. Proceedings of 10th Symposium on Space Nuclear Power and Propulsion [C]. Albuquerque: American Institute of Physics Press, 1993: 267
42
Zee R H, Xiao Z, Chin B A, et al. Processing of single crystals for high temperature applications [J]. J. Mater. Process. Technol., 2001, 113: 75
43
Davis J W, Barabash V R, Makhankov A, et al. Assessment of tungsten for use in the ITER plasma facing components [J]. J. Nucl. Mater., 1998, 258-263: 308
44
Linke J, Du J, Loewenhoff T, et al. Challenges for plasma-facing components in nuclear fusion [J]. Matter Radiat. Extremes, 2019, 4: 056201
45
Philipps V. Tungsten as material for plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2011, 415: S2
46
Abernethy R G. Predicting the performance of tungsten in a fusion environment: A literature review [J]. Mater. Sci. Technol., 2017, 33: 388
47
Sloan E D. Clathrate Hydrates of Natural Gases [M]. 2nd Ed., New York: Marcel Dekker Inc., 1998: 1
48
Collett T S, Lee M W, Agena W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope [J]. Mar. Peroleum Geol., 2011, 28: 279
49
Huang X, Wang P K, Pang S J, et al. Future utilization of gas hydrate resources in polar regions [J]. Mar. Geol. Front., 2017, 33(11): 18
Rice J R, Thomson R. Ductile versus brittle behaviour of crystals [J]. Philos. Mag., 1974, 29A: 73
51
Khantha M, Pope D P, Vitek V. Dislocation screening and the brittle-to-ductile transition: A Kosterlitz-Thouless type instability [J]. Phys. Rev. Lett., 1994, 73: 684
52
Hartmaier A, Gumbsch P. On the activation energy for the brittle/ductile transition [J]. Phys. Stat. Solidi, 1997, 202B: R1
53
Gu Y F, Harada H, Ro Y. Chromium and chromium-based alloys: Problems and possibilities for high-temperature service [J]. JOM, 2004, 56(9): 28
54
Garzke W H, Foecke T, Matthias P, et al. A marine forensic analysis of the RMS TITANIC [A]. Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition [C]. Providence: IEEE, 2000
55
Li W J, Li Q, Wei L. Application of Charpy impact test on metallic materials [J]. Value Eng., 2018, 37(4): 121
Reiser J, Hoffmann J, Jäntsch U, et al. Ductilisation of tungsten (W): On the shift of the brittle-to-ductile transition (BDT) to lower temperatures through cold rolling [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 351
57
Ding H L. Study on the internal friction and magnetic non-destructive testing method of DBTT for metal materials [D]. Hefei: University of Science and Technology of China, 2018
Taylor G I, Elam C F. The distortion of iron crystals [J]. Proc. Roy. Soc., 1926, 112A: 337
59
Weinberger C R, Boyce B L, Battaile C C. Slip planes in bcc transition metals [J]. Int. Mater. Rev., 2013, 58: 296
60
Cho H, Bronkhorst C A, Mourad H M, et al. Anomalous plasticity of body-centered-cubic crystals with non-Schmid effect [J]. Int. J. Solids Struct., 2018, 139-140: 138
61
Duesbery M S, Vitek V. Plastic anisotropy in b.c.c. transition metals [J]. Acta Mater., 1998, 46: 1481
62
Vitek V. Core structure of screw dislocations in body-centred cubic metals: Relation to symmetry and interatomic bonding [J]. Philos. Mag., 2004, 84: 415
63
Mrovec M, Gröger R, Bailey A G, et al. Bond-order potential for simulations of extended defects in tungsten [J]. Phys. Rev., 2007, 75B: 104119
64
Hu X S, Huang M S, Li Z H. Nonplanar core structure of 1/2<111> screw dislocations: An anisotropic Peierls-Nabarro model [J]. Mech. Mater., 2021, 156: 103794
65
Dezerald L, Rodney D, Clouet E, et al. Plastic anisotropy and dislocation trajectory in BCC metals [J]. Nat. Commun., 2016, 7: 11695
66
Schoeck G. The Peierls model: Progress and limitations [J]. Mater. Sci. Eng., 2005, A400-401: 7
67
Monnet G, Terentyev D. Structure and mobility of the 1/2<111>{112} edge dislocation in BCC iron studied by molecular dynamics [J]. Acta Mater., 2009, 57: 1416
68
Marian J, Cai W, Bulatov V V. Dynamic transitions from smooth to rough to twinning in dislocation motion [J]. Nat. Mater., 2004, 3: 158
69
Schneider A S, Kaufmann D, Clark B G, et al. Correlation between critical temperature and strength of small-scale bcc pillars [J]. Phys. Rev. Lett., 2009, 103: 105501
70
Magnusson A W, Baldwin W M. Low temperature brittleness [J]. J. Mech. Phys. Solids, 1957, 5: 172
71
Yokobori T. Failure and fracture of metals as nucleation processes [J]. J. Phys. Soc. Jpn., 1952, 7: 44
72
Petch N J. The ductile-brittle transition in the fracture of α-iron: Ⅰ [J]. Philos. Mag., 1958, 3A: 1089
73
Heslop J, Petch N J. The ductile-brittle transition in the fracture of α-iron: Ⅱ [J]. Philos. Mag., 1958, 3A: 1128
74
Kameda J. A kinetic model for ductile-brittle fracture mode transition behavior [J]. Acta Metall., 1986, 34: 2391
75
Hirsch P B, Roberts S G. The brittle-ductile transition in silicon [J]. Philos. Mag., 1991, 64A: 55
76
Brunner D, Glebovsky V. Analysis of flow-stress measurements of high-purity tungsten single crystals [J]. Mater. Lett., 2000, 44: 144
77
Németh A A N, Reiser J, Armstrong D E J, et al. The nature of the brittle-to-ductile transition of ultra fine grained tungsten (W) foil [J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 9
78
Solie K E, Carlson O N. Effect of nitrogen on the brittle-ductile transition of chromium [J]. Trans. Metall. Soc. AIME, 1964, 230: 480
79
Cairns R E, Grant N J. The effects of carbon, nitrogen, oxygen and sulfur on the ductile-brittle fracture temperature of chromium [J]. Trans Metall. Soc. AIME, 1964, 230: 1150
80
Farrell K, Schaffhauser A C, Stiegler J O. Recrystallization, grain growth and the ductile-brittle transition in tungsten sheet [J]. J. Less-Common Met., 1967, 13: 141
81
Grujicic M, Zhao H, Krasko G L. Atomistic simulation of 3 (111) grain boundary fracture in tungsten containing various impurities [J]. Int. J. Refract. Met. Hard Mater., 1997, 15: 341
82
Pan Z L, Kecskes L J, Wei Q M. The nature behind the preferentially embrittling effect of impurities on the ductility of tungsten [J]. Comput. Mater. Sci., 2014, 93: 104
83
Klopp W D. A review of chromium, molybdenum, and tungsten alloys [J]. J. Less-Common Met., 1975, 42: 261
84
Mutoh Y, Ichikawa K, Nagata K, et al. Effect of rhenium addition on fracture toughness of tungsten at elevated temperature [J]. J. Mater. Sci., 1995, 30: 770
85
Klopp W D, Witzke W R, Raffo P L. Mechanical properties of dilute tungsten-rhenium alloys [R]. Washington: NASA, 1966
86
Romaner L, Ambrosch-Draxl C, Pippan R. Effect of rhenium on the dislocation core structure in tungsten [J]. Phys. Rev. Lett., 2010, 104: 195503
87
Hu Y J, Fellinger M R, Butler B G, et al. Solute-induced solid-solution softening and hardening in bcc tungsten [J]. Acta Mater. 2017, 141: 304
88
Setyawan W, Kurtz R J. Effects of transition metals on the grain boundary cohesion in tungsten [J]. Scr. Mater., 2012, 66: 558
89
Tsuji N, Okuno S, Koizumi Y, et al. Toughness of ultrafine grained ferritic steels fabricated by ARB and annealing process [J]. Mater. Trans., 2004, 45: 2272
90
Takaki S, Kawasaki K, Kimura Y. Mechanical properties of ultra fine grained steels [J]. J. Mater. Process. Technol., 2001, 117: 359
91
Hwang B, Kim S J. Grain size dependence of ductile-to-brittle transition temperature of a high-nitrogen Cr-Mn austenitic steel [J]. Mater. Sci. Eng., 2012, A531: 182
92
Rupp D, Mönig R, Gruber P, et al. Fracture toughness and microstructural characterization of polycrystalline rolled tungsten [J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 669
93
Aleksandro I V, Raab G I, Shestakova L O, et al. Refinement of tungsten microstructure by severe plastic deformation [J]. Phys. Met. Metallogr., 2002, 93: 493
94
Vorhauer A, Pippan R. Microstructure and thermal stability of tungsten based materials processed by means of severe plastic deformation [J]. Mater. Sci. Forum, 2003, 426-432: 2747
95
Li P, Wang X, Xue K M, et al. Microstructure and recrystallization behavior of pure W powder processed by high-pressure torsion [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 439
96
Ha K F, Yang C, Bao J S. Effect of dislocation density on the ductile-brittle transition in bulk Fe-3%Si single crystals [J]. Scr. Metall. Mater., 1994, 30: 1065
97
Zhao M Y, Zhou Z J, Zhong M, et al. Effect of hot rolling on the microstructure and fracture behavior of a bulk fine-grained W-Y2O3 alloy [J]. Mater. Sci. Eng., 2015, A646: 19
98
Zhang T Q, Wang Y J, Zhou Y, et al. Effect of heat treatment on microstructure and mechanical properties of ZrC particles reinforced tungsten-matrix composites [J]. Mater. Sci. Eng., 2009, A512: 19
99
Kurishita H, Matsuo S, Arakawa H, et al. Development of re-crystallized W-1.1%TiC with enhanced room-temperature ductility and radiation performance [J]. J. Nucl. Mater., 2010, 398: 87
100
Fukuda M, Hasegawa A, Tanno T, et al. Property change of advanced tungsten alloys due to neutron irradiation [J]. J. Nucl. Mater., 2013, 442: S273
101
Miao S, Xie Z M, Zeng L F, et al. Mechanical properties, thermal stability and microstructure of fine-grained W-0.5 wt.% TaC alloys fabricated by an optimized multi-step process [J]. Nucl. Mater. Energy, 2017, 13: 12
102
Lang S T, Yan Q Z, Sun N B, et al. Effects of TiC content on microstructure, mechanical properties, and thermal conductivity of W-TiC alloys fabricated by a wet-chemical method [J]. Fusion Eng. Des., 2017, 121: 366
103
Deng H W, Xie Z M, Wang Y K, et al. Mechanical properties and thermal stability of pure W and W-0.5 wt%ZrC alloy manufactured with the same technology [J]. Mater. Sci. Eng., 2018, A715: 117
104
Tan X Y, Li P, Luo L M, et al. Effect of second-phase particles on the properties of W-based materials under high-heat loading [J]. Nucl. Mater. Energy, 2016, 9: 399
105
Blagoeva D T, Opschoor J, van der Laan J G, et al. Development of tungsten and tungsten alloys for DEMO divertor applications via MIM technology [J]. J. Nucl. Mater., 2013, 442: S198
106
Ding M S, Du J P, Wan L, et al. Radiation-induced helium nanobubbles enhance ductility in submicron-sized single-crystalline copper [J]. Nano Lett., 2016, 16: 4118
107
Zheng R Y, Jian W R, Beyerlein I J, et al. Atomic-scale hidden point-defect complexes induce ultrahigh-irradiation hardening in tungsten [J]. Nano Lett., 2021, 21: 5798
108
Li J T, Beyerlein I J, Han W Z. Helium irradiation-induced ultrahigh hardening in niobium [J]. Acta Mater., 2022, 226: 117656
109
Yang H, Lozano J G, Pennycook T J, et al. Imaging screw dislocations at atomic resolution by aberration-corrected electron optical sectioning [J]. Nat. Commun., 2015, 6: 7266
110
Song K P, Liu J K, Lu N, et al. Direct atomic-scale imaging of a screw dislocation core structure in inorganic halide perovskites [J]. Phys. Chem. Chem. Phys., 2022, 24: 6393
111
Chu F, Zhong Q P. The essence and relation of ductile-brittle evaluate criterions of metals [J]. J. Beijing Univ. Aeronaut. Astronaut., 1992, (2): 120
Zhong Q P, Zhang Z, Li J, et al. Mathematical simulation and experimental mark of ductile-brittle transition process for materials [J] J. Beijing Univ. Aeronaut. Astronaut., 1993, (2): 16
Zhang Y H, Ma E, Sun J, et al. A unified model for ductile-to-brittle transition in body-centered cubic metals [J]. J. Mater. Sci. Technol., 2022, 141: 193