|
|
Research Progress on Biocompatibility Evaluation of Biomedical Degradable Zinc Alloys |
WANG Luning1,2( ), YIN Yuxia1, SHI Zhangzhi1, HAN Qianqian3 |
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2 Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing 100083, China 3 National Institutes for Food and Drug Control, Beijing 102629, China |
|
Cite this article:
WANG Luning, YIN Yuxia, SHI Zhangzhi, HAN Qianqian. Research Progress on Biocompatibility Evaluation of Biomedical Degradable Zinc Alloys. Acta Metall Sin, 2023, 59(3): 319-334.
|
Abstract Zn and its alloys have recently been used as a new class of biodegradable biomedical metals besides magnesium and iron alloys, owing to their moderate corrosion rate and good mechanical properties. In recent years, researchers have rigorously studied the design, processing, and degradation mechanism of Zn alloys, but their biocompatibility has not been well explored. Past research on the biocompatibility of Zn alloys focused on in vitro cytotoxicity, hemolysis, and coagulation, and only a few materials were implanted into animals for characterizing the histocompatibility. Biocompatibility involves complex local and systemic reactions, such as cells, tissues, blood, and immunity. In addition to the physical and chemical properties of the material, the biocompatibility is also affected by interactions between the material and body. In this paper, the chemical and phase compositions of degradable zinc alloys were analyzed, and the biological evaluation methods were clarified. In view of the recent studies on zinc alloy biocompatibility, future research directions were proposed.
|
Received: 23 September 2022
|
|
Fund: National Natural Science Foundation of China(51871020);National Key Research and Development Program of China(2016YFC1102500) |
About author: WANG Luning, professor, Tel: (010)62332184, E-mail: luning.wang@ustb.edu.cn
|
1 |
Scholten K, Meng E. Materials for microfabricated implantable devices: A review [J]. Lab Chip, 2015, 15: 4256
doi: 10.1039/c5lc00809c
pmid: 26400550
|
2 |
Xiao M, Chen Y M, Biao M N, et al. Bio-functionalization of biomedical metals [J]. Mater. Sci. Eng., 2017, C70: 1057
|
3 |
Pogorielov M, Husak E, Solodivnik A, et al. Magnesium-based biodegradable alloys: Degradation, application, and alloying elements [J]. Interv. Med. Appl. Sci., 2017, 9: 27
|
4 |
Sharma M P. Corrosion of bio-materials [J]. J. Metall. Mater. Eng. Res., 2020, 10: 21
|
5 |
Masiero G, Rodinò G, Matsuda J, et al. Bioresorbable coronary scaffold technologies: What's new? [J]. Cardiol. Clin., 2020, 38: 589
doi: 10.1016/j.ccl.2020.07.004
pmid: 33036720
|
6 |
Jinnouchi H, Torii S, Sakamoto A, et al. Fully bioresorbable vascular scaffolds: Lessons learned and future directions [J]. Nat. Rev. Cardiol., 2019, 16: 286
doi: 10.1038/s41569-018-0124-7
pmid: 30546115
|
7 |
Onuma Y, Muramatsu T, Kharlamov A, et al. Freeing the vessel from metallic cage: What can we achieve with bioresorbable vascular scaffolds? [J]. Cardiovasc. Interv. Ther., 2012, 27: 141
pmid: 22569783
|
8 |
de Pommereau A, de Hemptinne Q, Varenne O, et al. Bioresorbable vascular scaffolds: Time to absorb past lessons or fade away? Arch. Cardiovasc. Dis., 2018, 111: 229
doi: S1875-2136(18)30050-0
pmid: 29678390
|
9 |
Liu J Y, Wang J G, Yu Y H, et al. Advances in biodegradable vascular stent materials [J]. Mater. Sci. Forum, 2020, 987: 93
doi: 10.4028/www.scientific.net/MSF.987.93
|
10 |
Zhu D H, Cockerill I, Su Y C, et al. Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials [J]. ACS Appl. Mater. Interfaces, 2019, 11: 6809
doi: 10.1021/acsami.8b20634
|
11 |
Gąsior G, Szczepański J, Radtke A. Biodegradable iron-based materials-what was done and what more can Be done? [J]. Materials, 2021, 14: 3381
doi: 10.3390/ma14123381
|
12 |
Zhou Y Z, Wu P, Yang Y W, et al. The microstructure, mechanical properties and degradation behavior of laser-melted Mg-Sn alloys [J]. J. Alloys Compd., 2016, 687: 109
doi: 10.1016/j.jallcom.2016.06.068
|
13 |
Wen P, Voshage M, Jauer L, et al. Laser additive manufacturing of Zn metal parts for biodegradable applications: Processing, formation quality and mechanical properties [J]. Mater. Des., 2018, 155: 36
doi: 10.1016/j.matdes.2018.05.057
|
14 |
Song B, Dong S J, Liu Q, et al. Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior [J]. Mater. Des., 2014, 54: 727
doi: 10.1016/j.matdes.2013.08.085
|
15 |
Jo S, Whitmore L, Woo S, et al. Excellent age hardenability with the controllable microstructure of AXW100 magnesium sheet alloy [J]. Sci. Rep., 2020, 10: 22413
doi: 10.1038/s41598-020-79390-z
pmid: 33376246
|
16 |
Wang C R, Xi T F, Feng X M. The important rule of material and chemical characterization in device evaluation [J]. Chin. Med. Dev. Inf., 2007, 13(5): 4
|
|
王春仁, 奚廷斐, 冯晓明. 医疗器械生物材料表征和化学性能检测的重要性 [J]. 中国医疗器械信息, 2007, 13(5): 4
|
17 |
Li H F, Wang P Y, Lin G C, et al. The role of rare earth elements in biodegradable metals: A review [J]. Acta Biomater., 2021, 129: 33
doi: 10.1016/j.actbio.2021.05.014
|
18 |
Liu Y, Zheng Y F, Chen X H, et al. Fundamental theory of biodegradable metals—Definition, criteria, and design [J]. Adv. Funct. Mater., 2019, 29: 1805402
doi: 10.1002/adfm.201805402
|
19 |
Wang C, Yu Z T, Cui Y J, et al. Processing of a novel Zn alloy micro-tube for biodegradable vascular stent application [J]. J. Mater. Sci. Technol., 2016, 32: 925
doi: 10.1016/j.jmst.2016.08.008
|
20 |
Zheng Y F, Xia D D, Chen Y N, et al. Additively manufactured biodegrabable metal implants [J]. Acta Metall. Sin., 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
|
|
郑玉峰, 夏丹丹, 谌雨农 等. 增材制造可降解金属医用植入物 [J]. 金属学报, 2021, 57: 1499
doi: 10.11900/0412.1961.2021.00294
|
21 |
Hernández-Escobar D, Champagne S, Yilmazer H, et al. Current status and perspectives of zinc-based absorbable alloys for biomedical applications [J]. Acta Biomater., 2019, 97: 1
doi: S1742-7061(19)30523-9
pmid: 31351253
|
22 |
Törne K, Larsson M, Norlin A, et al. Degradation of zinc in saline solutions, plasma, and whole blood [J]. J. Biomed. Mater. Res., 2016, 104B: 1141
|
23 |
Su Y C, Cockerill I, Wang Y D, et al. Zinc-based biomaterials for regeneration and therapy [J]. Trends Biotechnol., 2019, 37: 428
doi: S0167-7799(18)30305-6
pmid: 30470548
|
24 |
Hojyo S, Fukada T. Roles of zinc signaling in the immune system [J]. J. Immunol. Res., 2016, 2016: 6762343
|
25 |
Berg J M, Shi Y G. The galvanization of biology: A growing appreciation for the roles of zinc [J]. Science, 1996, 271: 1081
doi: 10.1126/science.271.5252.1081
pmid: 8599083
|
26 |
Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis [J]. Mol. Cell. Biochem., 2010, 338: 241
doi: 10.1007/s11010-009-0358-0
pmid: 20035439
|
27 |
Imbeault M, Helleboid P Y, Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks [J]. Nature, 2017, 543: 550
doi: 10.1038/nature21683
|
28 |
Hennig B, Toborek M, McClain C J, et al. Nutritional implications in vascular endothelial cell metabolism [J]. J. Am. Coll. Nutr., 1996, 15: 345
pmid: 8829090
|
29 |
Yamaguchi M. Nutritional factors and bone homeostasis: Synergistic effect with zinc and genistein in osteogenesis [J]. Mol. Cell. Biochem., 2012, 366: 201
doi: 10.1007/s11010-012-1298-7
pmid: 22476903
|
30 |
Miller L V, Krebs N F, Hambidge K M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate [J]. J. Nutr., 2007, 137: 135
pmid: 17182814
|
31 |
Bitanihirwe B K Y, Cunningham M G. Zinc: the brain's dark horse [J]. Synapse, 2010, 63: 1029
doi: 10.1002/syn.20683
|
32 |
Kabir H, Munir K, Wen C E, et al. Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives [J]. Bioact. Mater., 2021, 6: 836
doi: 10.1016/j.bioactmat.2020.09.013
pmid: 33024903
|
33 |
Yang N, Venezuela J, Almathami S, et al. Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects [J]. Biomaterials, 2022, 280: 121301
doi: 10.1016/j.biomaterials.2021.121301
|
34 |
Su Y C, Fu J Y, Lee W, et al. Improved mechanical, degradation, and biological performances of Zn-Fe alloys as bioresorbable implants [J]. Bioact. Mater., 2022, 17: 334
doi: 10.1016/j.bioactmat.2021.12.030
pmid: 35386444
|
35 |
Xia D D, Qin Y, Guo H, et al. Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur [J]. Bioact. Mater., 2023, 19: 12
doi: 10.1016/j.bioactmat.2022.03.010
pmid: 35415313
|
36 |
ISO. Biological evaluation of medical devices, Part 1: Evaluation and testing within a risk management process [S]. 2018
|
37 |
Anderson J M. Biological responses to materials [J]. Annu. Rev. Mater. Res., 2001, 31: 81
doi: 10.1146/annurev.matsci.31.1.81
|
38 |
Williams D F. On the mechanisms of biocompatibility [J]. Biomaterials, 2008, 29: 2941
doi: 10.1016/j.biomaterials.2008.04.023
pmid: 18440630
|
39 |
Zhao P, Xing L N, Liu W B, et al. Biocompatibility evaluation of medical devices: Status, progress and trend [J]. China Med. Dev. Inf., 2021, 27(11): 1
|
|
赵 鹏, 邢丽娜, 刘文博 等. 医疗器械生物相容性评价: 现状、进展与趋势 [J]. 中国医疗器械信息, 2021, 27(11): 1
|
40 |
Williams D F. On the nature of biomaterials [J]. Biomaterials, 2009, 30: 5897
doi: 10.1016/j.biomaterials.2009.07.027
pmid: 19651435
|
41 |
Geurtsen W. Biocompatibility of dental casting alloys [J]. Crit. Rev. Oral. Biol. Med., 2002, 13: 71
pmid: 12097239
|
42 |
Salimi A, Jamali Z, Atashbar S, et al. Pathogenic mechanisms and therapeutic implication in nickel-induced cell damage [J]. Endocr. Metab. Immune., 2020, 20: 968
|
43 |
Hillen U, Haude M, Erbel R, et al. Evaluation of metal allergies in patients with coronary stents [J]. Contact Dermatitis, 2002, 47: 353
pmid: 12581282
|
44 |
Holton A D, Walsh E G, Brott B C, et al. Evaluation of in-stent stenosis by magnetic resonance phase-velocity mapping in nickel-titanium stents [J]. J. Magn. Reson. Imaging, 2005, 22: 248
pmid: 16028256
|
45 |
Liu P S, Yu B, Hu A M, et al. Development in applications of porous metals [J]. Trans. Nonferrous Met. Soc. China, 2001, 11: 629
|
46 |
Qin J H, Chen Q, Yang C Y, et al. Research process on property and application of metal porous materials [J]. J. Alloys Compd., 2016, 654: 39
doi: 10.1016/j.jallcom.2015.09.148
|
47 |
Purdue P E, Koulouvaris P, Potter H G, et al. The cellular and molecular biology of periprosthetic osteolysis [J]. Clin. Orthop. Relat. Res., 2007, 454: 251
doi: 10.1097/01.blo.0000238813.95035.1b
|
48 |
Goodman S. Wear particulate and osteolysis [J]. Orthop. Clin. North Am., 2005, 36: 41
doi: 10.1016/j.ocl.2004.06.015
|
49 |
Yang K, Shi J R, Wang L, et al. Bacterial anti-adhesion surface design: Surface patterning, roughness and wettability: A review [J]. J. Mater. Sci. Technol., 2022, 99: 82
doi: 10.1016/j.jmst.2021.05.028
|
50 |
Yao X, Peng R, Ding J D. Cell-material interactions revealed via material techniques of surface patterning [J]. Adv. Mater., 2013, 25: 5257
doi: 10.1002/adma.201301762
|
51 |
Brott T, Stump D. Overview of hemostasis and thrombosis [J]. Semin. Neurol., 1991, 11: 305
pmid: 1811287
|
52 |
Wehrmacher W H. Molecular markers of hemostasis: Introduction and overview [J]. Semin. Thromb. Hemost., 1984, 10: 215
pmid: 6515417
|
53 |
Wu S, Applewhite A J, Niezgoda J, et al. Oxidized regenerated cellulose/collagen dressings: Review of evidence and recommendations [J]. Adv. Skin Wound Care, 2017, 30: S1
doi: 10.1097/01.ASW.0000525951.20270.6c
|
54 |
Zhang L, Wang S M, Tan M H, et al. Efficacy of oxidized regenerated cellulose/collagen dressing for management of skin wounds: A systematic review and meta-analysis [J]. Evid.-Based Complement. Alternat. Med., 2021, 2021: 1058671
|
55 |
Liu C H, Wu S F, Hou L, et al. Study on cytotoxicity tests of medical devices based on IC50 [J]. Chin. J. Med. Lnstrument., 2014, 38: 433
|
|
刘成虎, 吴世福, 侯 丽 等. 基于IC50的医疗器械细胞毒性试验方法的研究 [J]. 中国医疗器械杂志, 2014, 38: 433
|
56 |
Lin W J, Zhang G, Cao P, et al. Cytotoxicity and its test methodology for a bioabsorbable nitrided iron stent [J]. J. Biomed. Mater. Res., 2015, 103B: 764
|
57 |
Dargusch M S, Balasubramani N, Venezuela J, et al. Improved biodegradable magnesium alloys through advanced solidification processing [J]. Scr. Mater., 2020, 177: 234
doi: 10.1016/j.scriptamat.2019.10.028
|
58 |
Niederlaender J, Walter M, Krajewski S, et al. Cytocompatibility evaluation of different biodegradable magnesium alloys with human mesenchymal stem cells [J]. J. Mater. Sci.: Mater. Med., 2014, 25: 835
doi: 10.1007/s10856-013-5119-7
|
59 |
Ma J, Zhao N, Zhu D H. Endothelial cellular responses to biodegradable metal zinc [J]. ACS Biomater. Sci. Eng., 2015, 1: 1174
pmid: 27689136
|
60 |
Shearier E R, Bowen P K, He W L, et al. In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc [J]. ACS Biomater. Sci. Eng., 2016, 2: 634
pmid: 27840847
|
61 |
Kubásek J, Vojtěch D, Jablonská E, et al. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys [J]. Mater. Sci. Eng., 2016, C58: 24
|
62 |
Jablonská E, Vojtěch D, Fousová M, et al. Influence of surface pre-treatment on the cytocompatibility of a novel biodegradable ZnMg alloy [J]. Mater. Sci. Eng., 2016, C68: 198
|
63 |
Venezuela J, Dargusch M S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review [J]. Acta Biomater., 2019, 87: 1
doi: S1742-7061(19)30055-8
pmid: 30660777
|
64 |
Shi Z Z, Yu J, Liu X F, et al. Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8Mn alloy [J]. Mater. Sci. Eng., 2019, C99: 969
|
65 |
Li P, Schille C, Schweizer E, et al. Selection of extraction medium influences cytotoxicity of zinc and its alloys [J]. Acta Biomater., 2019, 98: 235
doi: S1742-7061(19)30179-5
pmid: 30862550
|
66 |
Reference individuals for use in radiation protection-Part 5: Human body elemental composition and contents of element in main tissues and organs [S]. 2014
|
67 |
Mostaed E, Sikora-Jasinska M, Drelich J W, et al. Zinc-based alloys for degradable vascular stent applications [J]. Acta Biomater., 2018, 71: 1
doi: S1742-7061(18)30125-9
pmid: 29530821
|
68 |
Wang J L, Witte F, Xi T F, et al. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials [J]. Acta Biomater., 2015, 21: 237
doi: 10.1016/j.actbio.2015.04.011
pmid: 25890098
|
69 |
Boon G D. An overview of hemostasis [J]. Toxicol. Pathol., 1993, 21: 170
pmid: 8210939
|
70 |
De Gaetano G. Historical overview of the role of platelets in hemostasis and thrombosis [J]. Haematologica, 2001, 86: 349
pmid: 11325638
|
71 |
Yin Y X, Zhou C, Shi Y P, et al. Hemocompatibility of biodegradable Zn-0.8 wt% (Cu, Mn, Li) alloys [J]. Mater. Sci. Eng., 2019, C104: 109896
|
72 |
Liu X W, Sun J K, Zhou F Y, et al. Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application [J]. Mater. Des., 2016, 94: 95
doi: 10.1016/j.matdes.2015.12.128
|
73 |
Shen C, Liu X W, Fan B, et al. Mechanical properties, in vitro degradation behavior, hemocompatibility and cytotoxicity evaluation of Zn-1.2Mg alloy for biodegradable implants [J]. RSC Adv., 2016, 6: 86410
doi: 10.1039/C6RA14300H
|
74 |
Liu X W, Sun J K, Yang Y H, et al. Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn-Mg-Sr alloys as biodegradable metals [J]. Mater. Lett., 2016, 162: 242
doi: 10.1016/j.matlet.2015.07.151
|
75 |
Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25: 2577
doi: 10.1002/adma.201300226
|
76 |
Bowen P K, Guillory II R J, Shearier E R, et al. Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents [J]. Mater. Sci. Eng., 2015, C56: 467
|
77 |
Pierson D, Edick J, Tauscher A, et al. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials [J]. J. Biomed. Mater. Res., 2012, 100B: 58
doi: 10.1002/jbm.b.31922
|
78 |
Yang H T, Wang C, Liu C Q, et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model [J]. Biomaterials, 2017, 145: 92
doi: S0142-9612(17)30532-X
pmid: 28858721
|
79 |
Zhao S, Seitz J M, Eifler R, et al. Zn-Li alloy after extrusion and drawing: Structural, mechanical characterization, and biodegradation in abdominal aorta of rat [J]. Mater. Sci. Eng., 2017, C76: 301
|
80 |
Jin H L, Zhao S, Guillory R, et al. Novel high-strength, low-alloys Zn-Mg (< 0.1wt% Mg) and their arterial biodegradation [J]. Mater. Sci. Eng., 2018, C84: 67
|
81 |
Bowen P K, Seitz J M, Guillory II R J, et al. Evaluation of wrought Zn-Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications [J]. J. Biomed. Mater. Res., 2018, 106B: 245
|
82 |
Tang L P, Eaton J W. Inflammatory responses to biomaterials [J]. Am. J. Clin. Pathol., 1995, 103: 466
doi: 10.1093/ajcp/103.4.466
pmid: 7726145
|
83 |
Lane J P, Perkins L E L, Sheehy A J, et al. Lumen gain and restoration of pulsatility after implantation of a bioresorbable vascular scaffold in porcine coronary arteries [J]. JACC: Cardiovasc. Interventions, 2014, 7: 688
doi: 10.1016/j.jcin.2013.11.024
|
84 |
Zhou C, Li H F, Yin Y X, et al. Long-term in vivo study of biodegradable Zn-Cu stent: A 2-year implantation evaluation in porcine coronary artery [J]. Acta Biomater., 2019, 97: 657
doi: S1742-7061(19)30559-8
pmid: 31401346
|
85 |
Oliver A A, Guillory II R J, Flom K L, et al. Analysis of vascular inflammation against bioresorbable Zn-Ag-based alloys [J]. ACS Appl. Bio Mater., 2020, 3: 6779
doi: 10.1021/acsabm.0c00740
|
86 |
Drelich A J, Zhao S, Guillory II R J, et al. Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate [J]. Acta Biomater., 2017, 58: 539
doi: S1742-7061(17)30336-7
pmid: 28532901
|
87 |
Yang H T, Qu X H, Wang M Q, et al. Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites [J]. Chem. Eng. J., 2021, 417: 129317
doi: 10.1016/j.cej.2021.129317
|
88 |
Jia B, Yang H T, Han Y, et al. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications [J]. Acta Biomater., 2020, 108: 358
doi: S1742-7061(20)30141-0
pmid: 32165194
|
89 |
Jia B, Yang H T, Zhang Z C, et al. Biodegradable Zn-Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies [J]. Bioact. Mater., 2021, 6: 1588
doi: 10.1016/j.bioactmat.2020.11.007
pmid: 33294736
|
90 |
Guo P S, Zhu X L, Yang L J, et al. Ultrafine- and uniform-grained biodegradable Zn-0.5Mn alloy: Grain refinement mechanism, corrosion behavior, and biocompatibility in vivo [J]. Mater. Sci. Eng., 2021, C118: 111391
|
91 |
Yang H T, Jia B, Zhang Z C, et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications [J]. Nat. Commun., 2020, 11: 401
doi: 10.1038/s41467-019-14153-7
pmid: 31964879
|
92 |
Guo H, Hu J L, Shen Z Q, et al. In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis [J]. Acta Biomater., 2021, 121: 713
doi: 10.1016/j.actbio.2020.12.017
pmid: 33321221
|
93 |
Kafri A, Ovadia S, Yosafovich-Doitch G, et al. In vivo performances of pure Zn and Zn-Fe alloy as biodegradable implants [J]. J. Mater. Sci.: Mater. Med., 2018, 29: 94
doi: 10.1007/s10856-018-6096-7
|
94 |
Qu X H, Yang H T, Jia B, et al. Biodegradable Zn-Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation [J]. Acta Biomater., 2020, 117: 400
doi: 10.1016/j.actbio.2020.09.041
pmid: 33007485
|
95 |
Lin J X, Tong X, Shi Z M, et al. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications [J]. Acta Biomater., 2020, 106: 410
doi: S1742-7061(20)30096-9
pmid: 32068137
|
96 |
Lin S, Ran X L, Yan X H, et al. Systematical evolution on a Zn-Mg alloy potentially developed for biodegradable cardiovascular stents [J]. J. Mater. Sci.: Mater. Med., 2019, 30: 122
doi: 10.1007/s10856-019-6324-9
|
97 |
Tong X, Shi Z M, Xu L C, et al. Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn-Cu metal foams as potential biodegradable bone implants [J]. Acta Biomater., 2020, 102: 481
doi: S1742-7061(19)30781-0
pmid: 31740321
|
98 |
Peng F, Xie J N, Liu H M, et al. Shifting focus from bacteria to host neutrophil extracellular traps of biodegradable pure Zn to combat implant centered infection [J]. Bioact. Mater., 2023, 21: 436
doi: 10.1016/j.bioactmat.2022.09.004
pmid: 36185738
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|