Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (3): 349-370    DOI: 10.11900/0412.1961.2022.00480
Overview Current Issue | Archive | Adv Search |
Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance
LI Qian1,2,3, SUN Xuan3, LUO Qun3, LIU Bin3, WU Chengzhang3, PAN Fusheng1,2()
1 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
2 School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
3 State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Cite this article: 

LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance. Acta Metall Sin, 2023, 59(3): 349-370.

Download:  HTML  PDF(6034KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-based hydrogen storage materials have drawn a lot of attention due to the merit of high hydrogen storage density, earth-abundant resources, and environmental friendliness. However, the slow kinetics, high hydrogen absorption/desorption temperature, and poor cycling stability of Mg-based hydrogen storage materials prevent them from being used on a large scale. The developments of new alloys, nano-structure control, catalytic modification, and multiphase composites, among other things, have made significant progress in Mg-based hydrogen storage materials in recent years. However, challenges still exist, such as high hydrogen storage capacity, moderate adsorption/desorption temperature, rapid reaction rate, and long cycling life. In this review paper, the types of hydrogen storage phases and their interface in Mg-based materials, and the control methods of their microstructure/interface characteristics are systematically summarized. The mechanism of the hydrogen storage phase, microstructure, and surface/interface modifications on the improved thermal/kinetic performance of hydrogen storage are highlighted. This review concludes with an outlook and prospects on the challenge of designing Mg-based hydrogen storage materials by controlling the hydrogen storage phase and the corresponding interface.

Key words:  Mg-based hydrogen storage material      hydrogen storage phase      surface/interface structure      hydrogen storage performance      regulation strategy     
Received:  28 September 2022     
ZTFLH:  TG139  
Fund: National Natural Science Foundation of China(U2102212)
About author:  PAN Fusheng, professor, Tel: (023)65102856, E-mail: fspan@cqu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00480     OR     https://www.ams.org.cn/EN/Y2023/V59/I3/349

HydrogenPearsonSpace groupLatticeHydrideHydrogen storageRef.
storagesymbolparametercapacity
phasenm(mass fraction, %)
MghP2P63/mmca = b = 0.32, c = 0.52MgH27.60[19]
Mg2NihP18P6222a = b = 0.52, c = 1.32Mg2NiH43.62[25]
Mg2CuoF48Fddda = 0.91, b = 1.8,MgH22.53[25]
c = 0.53
Mg17Al12cI58I4¯3mbcc a = 1.06MgH24.40[19]
Mg3LacF16Fm3¯mbcc a = 0.75MgH2, LaH x (x = 2-3)2.89[26]
Mg17La2hP38P63/mmca = b = 1.04,MgH2, LaH x (x = 2-3)4.87[27,38]
c =1.02
Mg12CetI26I4/mmma = b = 1.03, c = 0.60MgH2, CeH2.735.68[28]
Mg3CecF16Fm3¯mbcc a = 0.74MgH2, CeH2.733.62[28]
Mg12NdtI26I4/mmma = b = 1.03, c = 0.59MgH2, NdH2.615.63[29]
Mg24Y5cI58I4¯3mbcc a = 1.13MgH2, YH x (x = 2-3)5.34[30]

18R-LPSO

(Mg85Zn6Y9)

-C2/ma = 1.11, b = 1.93,MgH2, YH x (x = 2-3)4.60-5.30[31]
c = 1.60
18R-LPSO-P6322a = b = 0.31, c = 4.86MgH2, Mg2NiH4, YH x4.60[32]
(Mg12YNi)(x = 2-3)
14H-LPSO-P63/mcma = b = 1.11, c = 3.66MgH2, YH x (x = 2-3)5.48[33]
(Mg92Cu3.5Y4.5)
Nd4Mg80Ni8tI92I41/amda = b = 1.27, c = 1.59MgH2, Mg2NiH4, NdH2.614.94[37]
Nd16Mg96Ni12oS124Cmc21a = 1.53, b = 2.17,MgH2, Mg2NiH4, NdH2.613.92[36]
c = 0.95
NdMg2NioS16Cmcma = 0.41, b = 1.02,MgH2, Nd2.612.07[39]
c = 0.83
LaMg2NioS16Cmcma = 0.42, b = 1.03,LaMg2NiH71.92[39]
c = 0.84
La2MgNi9hR36R3¯ma = b = 0.50, c = 2.43La2MgNi9H121.60[40]
LaMgNi4cF24F4¯3mbcc a =0.72LaMgNi4H71.40[41]
2H-La3MgNi14-P63/mmca = b = 0.50, c = 2.42La3MgNi14H18-[34]
3R-La3MgNi14-R3¯ma = b = 0.50, c = 3.61
2H-La4MgNi19-P63/mmca = b = 0.50, c = 3.23La4MgNi19H241.50[35]
3R-La4MgNi19-R3¯ma = b = 0.50, c = 4.82
Table 1  Crystal structures and hydrogen storage capacities of magnesium-based hydrogen storage phases in different systems[19,25-41]
Fig.1  SEM-EDS and TEM analyses of Mg4NiPd treated by high pressure torsion (HPT)[70]
(a) elemental map of Mg4NiPd treated by HPT for 0-1500 turns (N) (b, c) atom probe tomography (APT) elemental map (b) and XRD spectrum (c) of 1500 turns of Mg4NiPd (d) bright-field TEM image (e) dark-field image and corresponding selected area electron diffraction (SAED) pattern (f) high-resolution TEM image and corresponding fast Fourier transform (FFT) pattern (inset) (g) lattice image of {110} diffraction reconstructed by inverse FFT (IFFT) (inset)
Fig.2  Magnesium-based nanoparticles of Mg2Ni (a), Mg2Co (b), and Mg2Cu (c) prepared by hydrogen plasma-metal reaction (HPMR) method[22]; surface and cross-sectional (insets) morphologies of Mg0.83Nb0.17 (d), Mg0.70Nb0.30 (e), and Mg0.24Nb0.76 (f) prepared by Co-sputtering[75]; and SEM images of Mg nanowire synthesized by gas phase reaction at flow rates of 200 cm3/min (g), 300 cm3/min (h), and 400 cm3/min (i)[21]
RegulatorySampleHydrogen storageParticleMicrostructural characteristicRef.
methodstatusphasegrain size
SmeltingBulkMg, Mg-TM,SeveralLarge grain/phase size, limited interface fraction[56,57]
Mg-RE,hundreds of
Mg-TM-REmicrons
Melt-spinningRibbonMg-Ni,-Amorphous or nano/amorphous composite structure, interfaces between amorphous and nanocrystalline[58,59]
Mg-Ni-RE
PowderBulkMg-basedTens ofHigh porosity, core/shell structure, plenty of vacancies and cracks defect, phase/grain boundary[60-62]
metallurgycomposite phasemicrons
SevereBulkMg-basedMicro/nanoUltra-fine grain, high density grain/phase boundaries, twin boundaries, dislocation, stacking fault, texture[70-73]
plasticmetastablegrain size
deformationphase
VaporPowder/Mg, Mg-TM,20-600 nmNano-particles, nano-films, nano-wires, surface structure, surface orientation, interfacial energy, interfacial stress[21,22]
depositionthin film/Mg-Al, Mg-V,
wireMg-Y
ChemicalPowderMg, Mg-TM10-20 nmNano-particles, core/shell structure, high purity, high specific surface area[77-79]
reduction
MechanicalPowderMg, Mg-TM,Micro/nano sizeNano/amorphous composite structure, bcc crystal structure, crystal defect, metastable structural interface[81-83]
alloyingMg-RE,
Mg-TM-RE
Table 2  Comparisons of hydrogen storage phase and microstructure/interface of Mg-based materials under different control methods[21,22,56-62,70-73,77-79,81-83]
Metastable phaseLattice parameter / nmDecompositionHydrideHydrogen storageRef.
temperatureperformance
K(mass fraction)
Mg2Ti

bcc a = 0.345

fcc a = 0.429

hcp-I a = 0.319, c = 0.517

hcp-II a = 0.297, c = 0.514

643MgH2,-[68]
TH2

Mg-50%Zr

(atomic fraction)

bcc a = 0.3566

fcc a = 0.44-0.46

hcp a = 0.321, c = 0.516

> 773

-

Absorb: 1.0%

(20 s, 303 K, 9 MPa)

[67]

MgVCrbcc a = 0.295> 573-Absorb 0.9% H2 and the reversibility is 0.4% at 303 K[69]
MgV2Crbcc a = 0.294573MgH2
Mg-V-Snb2-type structure a = 0.360---[65]
Mg-V-Pdb2-type structure a = 0.316---
Mg-V-Nibcc a = 0.325---
Mg-Ni-Pdbcc-based CsCl-type structure440-0.7% reversible hydrogen[70]
a = 0.319absorption and desorption
at 305 K
Table 3  Metastable phases prepared by HPT in different magnesium based systems[65,67-70]
Fig.3  SEM image (a), TEM images (b, c), and XRD spectra (d) of Mg55Co45 alloy sample, and pressure-composition-isotherm (PCT) curves of the Mg55Co45 bcc alloy at 258 K (Inset: XRD curves of the Mg55Co45 bcc alloy before/after absorption and desorption cycle) (e)[84]
Fig.4  Comparisons of hydrogen absorption kinetics of different nanostructured Mg[21,75,76,94]
Fig.5  Cross-sectional SEM images (a-c) and kinetics of dehydrogenation at 393 K (d-f) of samples F300 (a, d), F2*250 (b, e), and F10*50 (c, f) in Mg85Ni14Ce1 amorphous films[103] (One Mg-Ni-Ce layer film in 300 nm, two Mg-Ni-Ce layers films in 250 nm, and ten Mg-Ni-Ce layers films in 50 nm were marked as F300, F2*250, and F10*50, respectively)
Fig.6  XRD spectra of melt-spun Mg65Ce10Ni20Cu5 alloy before and after HPT process for 1, 5, and 10 turns (inset: image of a disk after HPT process) (a), hydrogenation kinetics of sample processed by melt-spun and one HPT turns (b), and HRTEM image of sample processed by one HPT turns (c)[104] (Rotation speed ω = 0.5 r/min)
Fig.7  OM image for annealed Mg sample (a), TEM images and SAED patterns (insets) for Mg samples processed by HPT for 0.25 (b) and 10 (c, d) turns (Fig.7d is a dark-field image of Fig.7c), and hydrogen absorption kinetics curves of annealed samples and HPT treated samples at 0.25 and 10 turns (e)[66] (P—pressure, T—temperature, ε—equivalent strain)
Fig.8  TEM images, hydrogen absorption kinetic curves, and schematic of Mg2Ni samples treated with 10 turns of HPT and annealed at 673 K[55]
(a) bright field image
(b) HRTEM image of lattice and corresponding SAED pattern (inset)
(c) normal ABCABC stacked lattice image
(d) lattice image with a stacking layer dislocation
(e) hydrogen absorption kinetic curves of coarse crystal Mg2Ni with and without stacking faults (t—annealed time)
(f) schematic of stacking faults as hydrogen transport pathways
Fig.9  EBSD maps and corresponding polar maps of pure Mg treated by the processes of HPT (a), cold rolling (CR) (b), and MS-CR (c), kinetics of hydrogen absorption after Mg activation by different SPD processes (d), and kinetics of hydrogen desorption by MS and MS-CR samples (e)[52] (MS—melt spun, SPD—severe plastic deformation, RD—rolling direction, TD—transverse direction)
Fig.10  Morphologies and element distributions of the side (a-c) and surface (d-f) of 5.28%Ni (mass fraction) powder after cold spraying Mg strip, hydrogen absorption kinetics of different samples at 423 K, 8 × 105 Pa (g), and hydrogen desorption kinetics of different samples at 473 K, 2 × 104 Pa (h)[111] (SEI—secondary electron image)
Fig.11  TEM images and schematic representations of the cross-section of Mg-LaNi5-Soot obtained by accumulative roll bonding (ARB)[115]
(a) TEM bright-field image of Mg-LaNi5-Soot obtained by ARB 30 passes (cross-sectional view)
(b) TEM bright-field image of Mg-LaNi5-Soot obtained by ARB 5 passes
(c) zoomed-in view encompassing a single particle at the Mg-Mg interface
(d) SEAD pattern confirming the presence of LaNi5
(e) bright-field TEM image of Mg-Soot obtained by ARB 30 passes
(f) dark-field image with EDS line scan overlaid
(g) schematic representations of the cross-section of Mg-LaNi5-Soot samples
1 Zhu M, Ouyang L Z. Kinetics tuning and electrochemical performance of Mg-based hydrogen storage alloys [J]. Acta Metall. Sin., 2021, 57: 1416
doi: 10.11900/0412.1961.2021.00336
朱 敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能 [J]. 金属学报, 2021, 57: 1416
2 Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414: 353
doi: 10.1038/35104634
3 Cohen R L, Wernick J H. Hydrogen storage materials: Properties and possibilities [J]. Science, 1981, 214: 1081
pmid: 17755872
4 An X H, Pan Y B, Luo Q, et al. Application of a new kinetic model for the hydriding kinetics of LaNi5 - x Al x (0 ≤ x≤ 1.0) alloys [J]. J. Alloys Compd., 2010, 506: 63
doi: 10.1016/j.jallcom.2010.07.016
5 Ding W J, Zeng X Q. Research and applications of magnesium in China [J]. Acta Metall. Sin., 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.01450
丁文江, 曾小勤. 中国Mg材料研发与应用 [J]. 金属学报, 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.00386
6 Fang W B, Zhang W C, Yu Z X, et al. Recent development of Mg-based hydrogen storage material [J]. Chin. J. Nonferrous Met., 2002, 12: 853
房文斌, 张文丛, 于振兴 等. 镁基储氢材料的研究进展 [J]. 中国有色金属学报, 2002, 12: 853
7 Feng Y, Chen C, Peng C Q, et al. Research progress on magnesium matrix composites [J]. Chin. J. Nonferrous Met., 2017, 27: 2385
冯 艳, 陈 超, 彭超群 等. 镁基复合材料的研究进展 [J]. 中国有色金属学报, 2017, 27: 2385
8 Li Q, Lu Y F, Luo Q, et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials [J]. J. Magnes. Alloy., 2021, 9: 1922
doi: 10.1016/j.jma.2021.10.002
9 Zhang Q Y, Du S C, Ma Z W, et al. Recent advances in Mg-based hydrogen storage materials [J]. Chin. Sci. Bull., 2022, 67: 2158
doi: 10.1360/TB-2021-0430
张秋雨, 杜四川, 马哲文 等. 镁基储氢材料的研究进展 [J]. 科学通报, 2022, 67: 2158
10 Zhou G Z, Li Q. Thermodynamics and kinetics of magnesium-based hydrogen storage material [J]. Chin. J. Nat., 2011, 33: 6
周国治, 李 谦. 镁基储氢材料的热力学和动力学 [J]. 自然杂志, 2011, 33: 6
11 Liu J, Li Q, Zhou G Z, et al. Model investigation of hydrogen absorption and desorption kinetics of nanocrystalline magnesium [J]. Rare Met. Mater. Eng., 2007, 36: 1802
刘 静, 李 谦, 周国治 等. 纳米晶镁粉的吸放氢动力学模型分析 [J]. 稀有金属材料与工程, 2007, 36: 1802
12 Wu G X, Zhang J Y, Wu Y Q, et al. First-principle calculations of the adsorption, dissociation and diffusion of hydrogen on the Mg (0001) surface [J]. Acta Phys. Chim. Sin., 2008, 24: 55
doi: 10.1016/S1872-1508(08)60006-6
13 Zeng X Q, Ding W J, Ying Y J, et al. Research progress of Mg-based energy materials [J]. Mater. China, 2011, 30(2): 35
曾小勤, 丁文江, 应燕君 等. 镁基能源材料研究进展 [J]. 中国材料进展, 2011, 30(2): 35
14 Wu X J, Xue H Q, Peng Y, et al. Research progress of Mg and Mg-based alloy hydrogen storage materials [J]. Rare Met. Mater. Eng., 2022, 51: 727
武晓娟, 薛华庆, 彭 涌 等. 镁及镁合金储氢材料的研究进展 [J]. 稀有金属材料与工程, 2022, 51: 727
15 El-Eskandarany M S, Shaban E, Aldakheel F, et al. Synthetic nanocomposite MgH2/5 wt.% TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell [J]. Sci. Rep., 2017, 7: 13296
doi: 10.1038/s41598-017-13483-0 pmid: 29038594
16 Lin H J, Lu Y S, Zhang L T, et al. Recent advances in metastable alloys for hydrogen storage: A review [J]. Rare Met., 2022, 41: 1797
doi: 10.1007/s12598-021-01917-8
17 Ding X, Chen R R, Zhang J X, et al. Recent progress on enhancing the hydrogen storage properties of Mg-based materials via fabricating nanostructures: A critical review [J]. J. Alloys Compd., 2022, 897: 163137
doi: 10.1016/j.jallcom.2021.163137
18 Liu J, Li Q, Zhou G Z. La0.67Mg0.33Ni3 alloy prepared by magnetic field assisted sintering synthesis [J]. Rare Met. Mater. Eng., 2013, 42: 392
刘 静, 李 谦, 周国治. 磁场辅助烧结法制备La0 . 67Mg 0.33Ni3储氢合金 [J]. 稀有金属材料与工程, 2013, 42: 392
19 Shang Y Y, Pistidda C, Gizer G, et al. Mg-based materials for hydrogen storage [J]. J. Magnes. Alloy., 2021, 9: 1837
doi: 10.1016/j.jma.2021.06.007
20 House S D, Vajo J J, Ren C, et al. Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials [J]. Acta Mater., 2015, 86: 55
doi: 10.1016/j.actamat.2014.11.047
21 Li W Y, Li C S, Ma H, et al. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption [J]. J. Am. Chem. Soc., 2007, 129: 6710
pmid: 17488082
22 Shao H Y, Xin G B, Zheng J, et al. Nanotechnology in Mg-based materials for hydrogen storage [J]. Nano Energy, 2012, 1: 590
doi: 10.1016/j.nanoen.2012.05.005
23 Huang Y Q, Xia G L, Chen J, et al. One-step uniform growth of magnesium hydride nanoparticles on graphene [J]. Prog. Natl. Sci., 2017, 27: 81
doi: 10.1016/j.pnsc.2016.12.015
24 Li Q, Zhou G Z. Relationships between key phases and their interfaces with properties in rare earth-magnesium alloys [J]. Chin. J. Nonferrous Met., 2019, 29: 1934
李 谦, 周国治. 稀土镁合金中关键相及其界面与性能的相关性 [J]. 中国有色金属学报, 2019, 29: 1934
25 Ouyang L Z, Liu F, Wang H, et al. Magnesium-based hydrogen storage compounds: A review [J]. J. Alloys Compd., 2020, 832: 154865
doi: 10.1016/j.jallcom.2020.154865
26 Ouyang L Z, Qin F Z, Zhu M. The hydrogen storage behavior of Mg3La and Mg3LaNi0.1 [J]. Scr. Mater., 2006, 55: 1075
doi: 10.1016/j.scriptamat.2006.08.052
27 Sun D L, Gingl F, Nakamura Y, et al. In situ X-ray diffraction study of hydrogen-induced phase decomposition in LaMg12 and La2Mg17 [J]. J. Alloys Compd., 2002, 333: 103
doi: 10.1016/S0925-8388(01)01712-1
28 Zhang X, Kevorkov D, Pekguleryuz M O. Study on the binary intermetallic compounds in the Mg-Ce system [J]. Intermetallics, 2009, 17: 496
doi: 10.1016/j.intermet.2009.01.002
29 Zhai C, Luo Q, Cai Q, et al. Thermodynamically analyzing the formation of Mg12Nd and Mg41Nd5 in Mg-Nd system under a static magnetic field [J]. J. Alloys Compd., 2019, 773: 202
doi: 10.1016/j.jallcom.2018.09.203
30 Zhang J, Mao C, Long C G, et al. Phase stability, elastic properties and electronic structures of Mg-Y intermetallics from first-principles calculations [J]. J. Magnes. Alloy., 2015, 3: 127
doi: 10.1016/j.jma.2015.03.003
31 Ishikawa K, Kawasaki T, Yamada Y. Hydrogenation behavior of Mg85Zn6Y9 crystalline alloy with long period stacking ordered structure [J]. Int. J. Hydrogen Energy, 2015, 40: 13014
doi: 10.1016/j.ijhydene.2015.07.103
32 Zhang Q A, Liu D D, Wang Q Q, et al. Superior hydrogen storage kinetics of Mg12YNi alloy with a long-period stacking ordered phase [J]. Scr. Mater., 2011, 65: 233
doi: 10.1016/j.scriptamat.2011.04.014
33 Chen R R, Ding X, Chen X Y, et al. In-situ hydrogen-induced evolution and de-/hydrogenation behaviors of the Mg93Cu7 - x Y x alloys with equalized LPSO and eutectic structure [J]. Int. J. Hydrogen Energy, 2019, 44: 21999
doi: 10.1016/j.ijhydene.2019.06.089
34 Nakamura J, Iwase K, Hayakawa H, et al. Structural study of La4MgNi19 hydride by in situ X-ray and neutron powder diffraction [J]. J. Phys. Chem., 2009, 113C: 5853
35 Zhang Q A, Fang M H, Si T Z, et al. Phase stability, structural transition, and hydrogen absorption-desorption features of the polymorphic La4MgNi19 compound [J]. J. Phys. Chem., 2010, 114C: 11686
36 Li Q, Luo Q, Gu Q F. Insights into the composition exploration of novel hydrogen storage alloys: Evaluation of the Mg-Ni-Nd-H phase diagram [J]. J. Mater. Chem., 2017, 5A: 3848
37 Luo Q, Gu Q F, Liu B, et al. Achieving superior cycling stability by in situ forming NdH2-Mg-Mg2Ni nanocomposites [J]. J. Mater. Chem., 2018, 6A: 23308
38 Liu J, Zhang X, Li Q, et al. Investigation on kinetics mechanism of hydrogen absorption in the La2Mg17-based composites [J]. Int. J. Hydrogen Energy, 2009, 34: 1951
doi: 10.1016/j.ijhydene.2008.12.040
39 Pei L C, Han S M, Wang J S, et al. Hydrogen storage properties and phase structures of RMg2Ni (R = La, Ce, Pr, Nd) alloys [J]. Mater. Sci. Eng., 2012, B177: 1589
40 Son V B, Volodin A A, Denys R V, et al. Hydrogen sorption and electrochemical properties of intermetallic compounds La2MgNi9 and La1.9Mg1.1Ni9 [J]. Russ. Chem. Bull., 2016, 65: 1971
doi: 10.1007/s11172-016-1538-1
41 Li H X, Wan C B, Li X C, et al. Structural, hydrogen storage, and electrochemical performance of LaMgNi4 alloy and theoretical investigation of its hydrides [J]. Int. J. Hydrogen Energy, 2022, 47: 1723
doi: 10.1016/j.ijhydene.2021.10.135
42 Liu Y F, Pan H G, Gao M X, et al. Investigation on the structure and electrochemical properties of the rare-earth Mg-based hydrogen storage electrode alloys [J]. Acta Metall. Sin., 2003, 39: 666
刘永锋, 潘洪革, 高明霞 等. 稀土镁基贮氢电极合金的结构与电化学性能研究 [J]. 金属学报, 2003, 39: 666
43 Luo Q, Guo Y L, Liu B, et al. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44: 171
doi: 10.1016/j.jmst.2020.01.022
44 Zhang J X, Ding X, Chen R R, et al. Design of LPSO-introduced Mg96Y2Zn2 alloy and its improved hydrogen storage properties catalyzed by in-situ formed YH2 [J]. J. Alloys Compd., 2022, 910: 164832
doi: 10.1016/j.jallcom.2022.164832
45 Sun Y, Wang D B, Wang J M, et al. Hydrogen storage properties of ultrahigh pressure Mg12NiY alloys with a superfine LPSO structure [J]. Int. J. Hydrogen Energy, 2019, 44: 23179
doi: 10.1016/j.ijhydene.2019.06.191
46 Zhang J X, Ding X, Chen R R, et al. Comparative study of solid-solution treatment and hot-extrusion on hydrogen storage performance for Mg96Y2Zn2 alloy: The nonnegligible role of elements distribution [J]. J. Power Sources, 2022, 548: 232037
doi: 10.1016/j.jpowsour.2022.232037
47 He J H, Zhang J, Zhou X J, et al. Hydrogen storage properties of Mg98.5Gd1Zn0.5 and Mg98.5Gd0.5Y0.5Zn0.5 alloys containing LPSO phases [J]. Int. J. Hydrogen Energy, 2021, 46: 32949
doi: 10.1016/j.ijhydene.2021.07.140
48 Li Q. Design of Mg-based multicomponent hydrogen storage alloys based on thermodynamic and kinetic calculations and physical chemistry of hydrogenation reaction [J]. Mater. China, 2015, 34: 698
李 谦. 基于热力学和动力学计算的镁基多元储氢合金设计及其氢化反应的物理化学 [J]. 中国材料进展, 2015, 34: 698
49 Zhao X J, Li Q, Chou K, et al. Effect of Co substitution for Ni and magnetic-heat treatment on the structures and electrochemical properties of La-Mg-Ni-type hydrogen storage alloys [J]. J. Alloys Compd., 2009, 473: 428
doi: 10.1016/j.jallcom.2008.05.108
50 Conrad H, Ertl G, Latta E E. Adsorption of hydrogen on palladium single crystal surfaces [J]. Surf. Sci., 1974, 41: 435
doi: 10.1016/0039-6028(74)90060-0
51 Han Z Y, Chen H P, Zhou S X. Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: A density functional theory study [J]. Appl. Surf. Sci., 2017, 394: 371
doi: 10.1016/j.apsusc.2016.10.101
52 Botta W J, Jorge Jr A M, Veron M, et al. H-sorption properties and structural evolution of Mg processed by severe plastic deformation [J]. J. Alloys Compd., 2013, 580(suppl.1) : S187
53 Song W J, Dong H P, Zhang G, et al. Enhanced hydrogen absorption kinetics by introducing fine eutectic and long-period stacking ordered structure in ternary eutectic Mg-Ni-Y alloy [J]. J. Alloys Compd., 2020, 820: 153187
doi: 10.1016/j.jallcom.2019.153187
54 Liang H, Li J, Shen X H, et al. The study of amorphous La@Mg catalyst for high efficiency hydrogen storage [J]. Int. J. Hydrogen Energy, 2022, 47: 18404
doi: 10.1016/j.ijhydene.2022.04.032
55 Hongo T, Edalati K, Arita M, et al. Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion [J]. Acta Mater., 2015, 92: 46
doi: 10.1016/j.actamat.2015.03.036
56 Ding X, Chen R R, Chen X Y, et al. A novel method towards improving the hydrogen storage properties of hypoeutectic Mg-Ni alloy via ultrasonic treatment [J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.06.003
57 Fu H, Wu W S, Dou Y, et al. Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5 wt% Ni alloys with dendrite interface [J]. J. Power Sources, 2016, 320: 212
doi: 10.1016/j.jpowsour.2016.04.045
58 Luo Q, Li J D, Li B, et al. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism [J]. J. Magnes. Alloy., 2019, 7: 58
doi: 10.1016/j.jma.2018.12.001
59 Lin H J, Ouyang L Z, Wang H, et al. Hydrogen storage properties of Mg-Ce-Ni nanocomposite induced from amorphous precursor with the highest Mg content [J]. Int. J. Hydrogen Energy, 2012, 37: 14329
doi: 10.1016/j.ijhydene.2012.07.073
60 Knotek V, Ekrt O, Michalcová A, et al. Electrochemical hydriding of nanocrystalline Mg-Ni-X (X = Co, Mn, Nd) alloys prepared by mechanical alloying and spark plasma sintering [J]. J. Alloys Compd., 2017, 726: 787
doi: 10.1016/j.jallcom.2017.08.059
61 Song X P, Zhang P L, Pei P, et al. The role of spark plasma sintering on the improvement of hydrogen storage properties of Mg-based composites [J]. Int. J. Hydrogen Energy, 2010, 35: 8080
doi: 10.1016/j.ijhydene.2010.01.048
62 Liu D M, Si T Z, Wang C C, et al. Phase component, microstructure and hydrogen storage properties of the laser sintered Mg-20wt.% LaNi5 composite [J]. Scr. Mater., 2007, 57: 389
doi: 10.1016/j.scriptamat.2007.05.011
63 Li Q, Wu Z, Lu X G, et al. Hydrogen sorption-desorption properties of Mg-Ni-Ti0.32Cr0.35V0.07Fe0.26 composite by mechanochemical syntyhsis [J]. Rare Met. Mater. Eng., 2007, 36: 1672
李 谦, 吴 铸, 鲁雄刚 等. 机械化学法制备Mg-Ni-Ti0.32Cr0.35V0.07-Fe0.26复合材料的储放氢性能 [J]. 稀有金属材料与工程, 2007, 36: 1672
64 Zhu W H, Zhu M, Luo K C, et al. Mechanical alloying induced solid state reaction and formation of nano-phase composite hydrogen storage alloys in MmNi5 - x (Co, Al, Mn) x /Mg system [J]. Acta Metall. Sin., 1999, 35: 541
朱文辉, 朱 敏, 罗堪昌 等. 高能球磨在MmNi5 - x (Co, Al, Mn) x /Mg体系中诱发的固态反应及纳米相复合储氢合金的形成 [J]. 金属学报, 1999, 35: 541
65 Edalati K, Uehiro R, Fujiwara K, et al. Ultra-severe plastic deformation: Evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems [J]. Mater. Sci. Eng., 2017, A701: 158
66 Edalati K, Yamamoto A, Horita Z, et al. High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain [J]. Scr. Mater., 2011, 64: 880
doi: 10.1016/j.scriptamat.2011.01.023
67 Edalati K, Emami H, Ikeda Y, et al. New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium-zirconium system produced by high-pressure torsion [J]. Acta Mater., 2016, 108: 293
doi: 10.1016/j.actamat.2016.02.026
68 Edalati K, Emami H, Staykov A, et al. Formation of metastable phases in magnesium-titanium system by high-pressure torsion and their hydrogen storage performance [J]. Acta Mater., 2015, 99: 150
doi: 10.1016/j.actamat.2015.07.060
69 Fujiwara K, Uehiro R, Edalati K, et al. New Mg-V-Cr BCC alloys synthesized by high-pressure torsion and ball milling [J]. Mater. Trans., 2018, 59: 741
doi: 10.2320/matertrans.M2018001
70 Edalati K, Uehiro R, Ikeda Y, et al. Design and synthesis of a magnesium alloy for room temperature hydrogen storage [J]. Acta Mater., 2018, 149: 88
doi: 10.1016/j.actamat.2018.02.033
71 Chiu C, Huang S J, Chou T Y, et al. Improving hydrogen storage performance of AZ31 Mg alloy by equal channel angular pressing and additives [J]. J. Alloys Compd., 2018, 743: 437
doi: 10.1016/j.jallcom.2018.01.412
72 Jorge Jr A M, Prokofiev E, De Lima G F, et al. An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing [J]. Int. J. Hydrogen Energy, 2013, 38: 8306
doi: 10.1016/j.ijhydene.2013.03.158
73 Jorge Jr A M, De Lima G F, Triques M R M, et al. Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling [J]. Int. J. Hydrogen Energy, 2014, 39: 3810
doi: 10.1016/j.ijhydene.2013.12.154
74 Wen J, De Rango P, Allain N, et al. Improving hydrogen storage performance of Mg-based alloy through microstructure optimization [J]. J. Power Sources, 2020, 480: 228823
doi: 10.1016/j.jpowsour.2020.228823
75 Zhang J G, Huang W C, Liu J W, et al. Microstructural evolution and hydrogen storage properties of Mg1 - x Nb x (x = 0.17-0.76) alloy films via co-sputtering [J]. Int. J. Hydrogen Energy, 2019, 44: 29100
doi: 10.1016/j.ijhydene.2019.07.101
76 Norberg N S, Arthur T S, Fredrick S J, et al. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution [J]. J. Am. Chem. Soc., 2011, 133: 10679
doi: 10.1021/ja201791y pmid: 21671640
77 Liu Y N, Zou J X, Zeng X Q, et al. Study on hydrogen storage properties of Mg-X (X = Fe, Co, V) nano-composites co-precipitated from solution [J]. RSC Adv., 2015, 5: 7687
doi: 10.1039/C4RA12977F
78 Cui J, Liu J W, Wang H, et al. Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism [J]. J. Mater. Chem., 2014, 2A: 9645
79 Cho E S, Ruminski A M, Aloni S, et al. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage [J]. Nat. Commun., 2016, 7: 10804
doi: 10.1038/ncomms10804 pmid: 26902901
80 Hu Y Q, Zhang H F, Wang A M, et al. Catalysis functions of amorphous TiMn1.5 during the hydriding process of magnesium [J]. Acta Metall. Sin., 2003, 39: 1094
胡业奇, 张海峰, 王爱民 等. TiMn1.5非晶在镁氢化过程中催化作用的研究 [J]. 金属学报, 2003, 39: 1094
81 Qi Y, Zhang Y H, Zhang W, et al. Hydrogen storage thermodynamics and kinetics of RE-Mg-Ni-based alloys prepared by mechanical milling [J]. Int. J. Hydrogen Energy, 2017, 42: 18473
doi: 10.1016/j.ijhydene.2017.04.180
82 Zhang Y H, Feng D C, Sun H, et al. Structure and electrochemical hydrogen storage characteristics of Ce-Mg-Ni-based alloys synthesized by mechanical milling [J]. J. Rare Earths, 2017, 35: 280
doi: 10.1016/S1002-0721(17)60911-6
83 Zhang Y H, Yuan Z M, Yang T, et al. An investigation on hydrogen storage thermodynamics and kinetics of Pr-Mg-Ni-based PrMg12-type alloys synthesized by mechanical milling [J]. J. Alloys Compd., 2016, 688: 585
doi: 10.1016/j.jallcom.2016.07.246
84 Li J D, Li B, Yu X Q, et al. Geometrical effect in Mg-based metastable nano alloys with BCC structure for hydrogen storage [J]. Int. J. Hydrogen Energy, 2019, 44: 29291
doi: 10.1016/j.ijhydene.2019.01.031
85 Kuji T, Nakayama S, Hanzawa N, et al. Synthesis of nano-structured b.c.c. Mg-Tm-V (Tm = Ni, Co, Cu) alloys and their hydrogen solubility [J]. J. Alloys Compd., 2003, 356-357: 456
doi: 10.1016/S0925-8388(03)00229-9
86 Kondo T, Sakurai Y. Hydrogen absorption-desorption properties of Mg-Ca-V BCC alloy prepared by mechanical alloying [J]. J. Alloys Compd., 2006, 417: 164
doi: 10.1016/j.jallcom.2005.05.054
87 Hitam C N C, Aziz M A A, Ruhaimi A H, et al. Magnesium-based alloys for solid-state hydrogen storage applications: A review [J]. Int. J. Hydrogen Energy, 2021, 46: 31067
doi: 10.1016/j.ijhydene.2021.03.153
88 Ouyang L Z, Yang X S, Zhu M, et al. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites [J]. J. Phys. Chem., 2014, 118C: 7808
89 Li Q, Li Y, Liu B, et al. The cycling stability of the in situ formed Mg-based nanocomposite catalyzed by YH2 [J]. J. Mater. Chem., 2017, 5A: 17532
90 Wagemans R W P, Van Lenthe J H, De Jongh P E, et al. Hydrogen storage in magnesium clusters: Quantum chemical study [J]. J. Am. Chem. Soc., 2005, 127: 16675
pmid: 16305257
91 Zhang X, Liu Y F, Ren Z H, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides [J]. Energy Environ. Sci., 2021, 14: 2302
doi: 10.1039/D0EE03160G
92 Tan Z P, Chiu C, Heilweil E J, et al. Thermodynamics, kinetics and microstructural evolution during hydrogenation of iron-doped magnesium thin films [J]. Int. J. Hydrogen Energy, 2011, 36: 9702
doi: 10.1016/j.ijhydene.2011.04.196
93 Li L L, Peng B, Ji W Q, et al. Studies on the hydrogen storage of magnesium nanowires by density functional theory [J]. J. Phys. Chem., 2009, 113C: 3007
94 Shao H Y, Ma W G, Kohno M, et al. Hydrogen storage and thermal conductivity properties of Mg-based materials with different structures [J]. Int. J. Hydrogen Energy, 2014, 39: 9893
doi: 10.1016/j.ijhydene.2014.02.063
95 Zhang Q Y, Zou J X, Ren L, et al. Research development of core-shell nanostructured Mg-based hydrogen storage composite materials [J]. Mater. Sci. Technol., 2020, 28(3): 58
doi: 10.1179/1743284711Y.0000000043
张秋雨, 邹建新, 任 莉 等. 核壳结构纳米镁基复合储氢材料研究进展 [J]. 材料科学与工艺, 2020, 28(3): 58
96 Zhang J G, Zhu Y F, Zang X X, et al. Nickel-decorated graphene nanoplates for enhanced H2 sorption properties of magnesium hydride at moderate temperatures [J]. J. Mater. Chem., 2016, 4A: 2560
97 Lotoskyy M, Denys R, Yartys V A, et al. An outstanding effect of graphite in nano-MgH2-TiH2 on hydrogen storage performance [J]. J. Mater. Chem., 2018, 6A: 10740
98 Jeon K J, Moon H R, Ruminski A M, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts [J]. Nat. Mater., 2011, 10: 286
doi: 10.1038/nmat2978
99 Iwakura C, Nohara S, Zhang S G, et al. Hydriding and dehydriding characteristics of an amorphous Mg2Ni-Ni composite [J]. J. Alloys Compd., 1999, 285: 246
doi: 10.1016/S0925-8388(98)00966-9
100 Isogai K, Shoji T, Kimura H, et al. Increase in thermal stability of Mg62Ni33Ca5 amorphous alloy by absorption of hydrogen [J]. Mater. Trans., JIM, 2000, 41: 1486
doi: 10.2320/matertrans1989.41.1486
101 Zhang Q A, Zhang L X, Wang Q Q. Crystallization behavior and hydrogen storage kinetics of amorphous Mg11Y2Ni2 alloy [J]. J. Alloys Compd., 2013, 551: 376
doi: 10.1016/j.jallcom.2012.11.046
102 Zhang Y H, Wang H T, Zhai T T, et al. Hydrogen storage characteristics of the nanocrystalline and amorphous Mg-Nd-Ni-Cu-based alloys prepared by melt spinning [J]. Int. J. Hydrogen Energy, 2014, 39: 3790
doi: 10.1016/j.ijhydene.2013.12.139
103 Han B, Yu S B, Wang H, et al. Nanosize effect on the hydrogen storage properties of Mg-based amorphous alloy [J]. Scr. Mater., 2022, 216: 114736
doi: 10.1016/j.scriptamat.2022.114736
104 Xu C, Lin H J, Edalati K, et al. Superior hydrogenation properties in a Mg65Ce10Ni20Cu5 nanoglass processed by melt-spinning followed by high-pressure torsion [J]. Scr. Mater., 2018, 152: 137
doi: 10.1016/j.scriptamat.2018.04.036
105 Edalati K, Shao H Y, Emami H, et al. Activation of titanium-vanadium alloy for hydrogen storage by introduction of nanograins and edge dislocations using high-pressure torsion [J]. Int. J. Hydrogen Energy, 2016, 41: 8917
doi: 10.1016/j.ijhydene.2016.03.146
106 Ham B, Junkaew A, Arróyave R, et al. Size and stress dependent hydrogen desorption in metastable Mg hydride films [J]. Int. J. Hydrogen Energy, 2014, 39: 2597
doi: 10.1016/j.ijhydene.2013.12.017
107 Mooij L P A, Baldi A, Boelsma C, et al. Interface energy controlled thermodynamics of nanoscale metal hydrides [J]. Adv. Energy Mater., 2011, 1: 754
doi: 10.1002/aenm.201100316
108 Ouyang L Z, Ye S Y, Dong H W, et al. Effect of interfacial free energy on hydriding reaction of Mg-Ni thin films [J]. Appl. Phys. Lett., 2007, 90: 021917
109 Fujii H, Higuchi K, Yamamoto K, et al. Remarkable hydrogen storage, structural and optical properties in multi-layered Pd/Mg thin films [J]. Mater. Trans., 2002, 43: 2721
doi: 10.2320/matertrans.43.2721
110 Ouyang L Z, Tang J J, Zhao Y J, et al. Express penetration of hydrogen on Mg (10 1 ¯ 3) along the close-packed-planes [J]. Sci. Rep., 2015, 5: 10776
doi: 10.1038/srep10776
111 El-Eskandarany M S, Banyan M, Al-Ajmi F. Cold-rolled magnesium hydride strips decorated with cold-sprayed Ni powders for solid-state-hydrogen storage [J]. Int. J. Hydrogen Energy, 2019, 44: 16852
doi: 10.1016/j.ijhydene.2019.04.204
112 Karst J, Sterl F, Linnenbank H, et al. Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale [J]. Sci. Adv., 2020, 6: eaaz0566
doi: 10.1126/sciadv.aaz0566
113 Krystian M, Zehetbauer M J, Kropik H, et al. Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by equal channel angular pressing [J]. J. Alloys Compd., 2011, 509: S449
doi: 10.1016/j.jallcom.2011.01.029
114 Faisal M, Gupta A, Shervani S, et al. Enhanced hydrogen storage in accumulative roll bonded Mg-based hybrid [J]. Int. J. Hydrogen Energy, 2015, 40: 11498
doi: 10.1016/j.ijhydene.2015.03.095
115 Faisal M, Balani K, Subramaniam A. Cross-sectional TEM investigation of Mg-LaNi5-Soot hybrids for hydrogen storage [J]. Int. J. Hydrogen Energy, 2021, 46: 5507
doi: 10.1016/j.ijhydene.2020.11.134
116 Patelli N, Migliori A, Morandi V, et al. Interfaces within biphasic nanoparticles give a boost to magnesium-based hydrogen storage [J]. Nano Energy, 2020, 72: 104654
doi: 10.1016/j.nanoen.2020.104654
117 Zhang Y, Zheng J G, Lu Z Y, et al. Boosting the hydrogen storage performance of magnesium hydride with metal organic framework-derived cobalt@nickel oxide bimetallic catalyst [J]. Chin. J. Chem. Eng., 2022, 52: 161
doi: 10.1016/j.cjche.2022.06.026
118 Aymonier C, Denis A, Roig Y, et al. Supported metal NPs on magnesium using SCFs for hydrogen storage: Interface and interphase characterization [J]. J. Supercrit. Fluids, 2010, 53: 102
doi: 10.1016/j.supflu.2010.02.012
[1] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[2] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[3] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[4] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[5] . Precipitation Strengthening in Titanium Alloys from First Principles Investigation[J]. 金属学报, 0, (): 0-0.
[6] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[7] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[8] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[9] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[10] YANG Qun, PENG Sixu, BU Qingzhou, YU Haibin. Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass[J]. 金属学报, 2021, 57(4): 553-558.
[11] BI Jiazi, LIU Xiaobin, LI Ran, ZHANG Tao. Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass[J]. 金属学报, 2021, 57(4): 559-566.
[12] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[13] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[14] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
[15] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
No Suggested Reading articles found!