Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (6): 792-798    DOI: 10.11900/0412.1961.2021.00001
Research paper Current Issue | Archive | Adv Search |
Ultrasonic Emulsification Preparation of Metallic Rubidium Sol and Its Ignition Performance
GUO Yujing1,2, BAO Haoming1(), FU Hao1,2, ZHANG Hongwen1, LI Wenhong3, CAI Weiping1,2
1.Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2.Graduate School of Science Island, University of Science and Technology of China, Hefei 230026, China
3.Hebei Rubidium Cesium Technology Co. Ltd., Chengde 063000, China
Cite this article: 

GUO Yujing, BAO Haoming, FU Hao, ZHANG Hongwen, LI Wenhong, CAI Weiping. Ultrasonic Emulsification Preparation of Metallic Rubidium Sol and Its Ignition Performance. Acta Metall Sin, 2022, 58(6): 792-798.

Download:  HTML  PDF(1815KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metallic rubidium (Rb) has great potential in various fields, such as energy, catalysis, and medical treatment. Fragmenting bulk Rb to the nanoscale is essential for its efficient application in these fields. However, as an alkali metal with a high chemical activity, Rb reacts violently with trace water, oxygen, and others; thus, preparing nanosized Rb is challenging. This study proposes a sample solid-liquid transformation and ultrasonic dispersion method to prepare Rb nanoparticles (NPs) utilizing Rb's low melting point. This method uses the ultrasonic emulsification of liquid Rb in a specific liquid (toluene) to form a colloidal Rb solution. Typically prepared Rb NPs are nearly spherical with an average size of approximately 45 nm. Further, the average size increases with a decrease in ultrasonic power. When the ultrasonic power falls to 320 and 240 W, the average NP size rises to 55 and 70 nm, respectively, demonstrating good controllability of the proposed method. Further experiments demonstrated that Rb NPs can ignite toluene at relatively low temperatures (say 120oC) within 1 s. When the temperature is up to 250oC, toluene can be ignited in 0.25 s. This study not only provides a new method for synthesizing Rb NPs but also offers new opportunities for novel energy-containing materials and ignition devices.

Key words:  rubidium nanoparticle      sol      ultrasonic emulsification      ignition performance     
Received:  05 January 2021     
ZTFLH:  O611.4  
Fund: Key Research and Development Project of Hebei Province(19211002D)
About author:  BAO Haoming, Tel: (0551)65591837, E-mail: baohm@issp.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00001     OR     https://www.ams.org.cn/EN/Y2022/V58/I6/792

Fig.1  Schematic of the rubidium sol preparation via solid/liquid transformation and ultrasonic dispersion
Fig.2  Optical absorption spectrum of the as-prepared sol solution (Inset I shows the optical photograph of the as-prepared sol in sample bottle; inset II shows the Tyndall effect of the sol after it was diluted to one-tenth of the original)
Fig.3  Characterization of the products
(a) XRD spectrum (b) TEM image (c) size distribution
(d) EDS result (f—atomic fraction) (e) element mapping of an isolated nanoparticles (NPs)
Fig.4  Optical absorption spectra under different ultrasonic powers (Insets show the photos of the corresponding sols) (a), TEM images (b, d) and size distributions (c, e) of sols obtained with ultrasonic powers of 320 W (b, c) and 240 W (d, e)
Fig.5  Schematics of the formation of rubidium sol
(a) ultrasonic cavitation effect
(b) schematic of the formation of rubidium NPs in toluene (I: cavitation bubble collapse induced mutual sputtering of rubidium and toluene at their interface, which produces relatively large liquid rubidium particles; II: smaller rubidium droplets produced via repeated cavitation bubble collapse; III: rubidium droplets reach critical size to form sol)
Fig.6  Photos at intervals of 0 s (a), 1.06 s (b), 1.25 s (c), 2.05 s (d), 4.19 s (e), and 4.75 s (f) after 300 μL sol was placed in the ceramic boat at 120oC
Fig.7  Ignition time at different temperatures
Fig.8  Evolution of liquid film morphology in the ceramic boat at 120oC (a) and schematic of the ignition principle (b)
1 Tan Y N, Liu Y. Properties and research progress of rubidium and its compounds [J]. Chin. J. Nonferrous Met., 2017, 27: 272
doi: 10.1016/S1003-6326(17)60031-1
谭彦妮, 刘 咏. 铷及含铷材料的性能与应用研究进展 [J]. 中国有色金属学报, 2017, 27: 272
2 Cui Y J, Liu Y, Yang B. The design of high precision time reference measurement system based on rubidium disciplined crystal oscillator and double TDC GP2 [J]. Chin. J. Electron Dev., 2017, 40: 1072
崔永俊, 刘 阳, 杨 兵. 基于铷原子钟和双TDC-GP2的高精度时间基准测量系统的设计 [J]. 电子器件, 2017, 40: 1072
3 Chang S M, Guo Y. Influences of alkali metal Rb doped Mn as catalyst on catalytic combustion activity of soot particle [J]. China Adhes., 2017, 26(5): 25
常三毛, 郭 耘. 碱金属Rb掺锰对碳烟颗粒催化燃烧活性的影响 [J]. 中国胶粘剂, 2017, 26(5): 25
4 Yang Y, Zhang Y, Guo Q, et al. Effect of extracellular potassium on the activity of distal renal tubule in mice [J]. J. Shanghai Jiaotong Univ. (Med. Sci.), 2019, 39(9): 85
杨 阳, 张 娅, 郭 琴 等. 细胞外钾对小鼠远端肾小管离子通道活性的影响 [J]. 上海交通大学学报(医学版), 2019, 39(9): 985
5 Qian J M, Li X X, Huang H Y. Properties of nanometer materials and its preparing methods [J]. New Chem. Mater., 2001, 29(7): 1
钱军民, 李旭祥, 黄海燕. 纳米材料的性质及其制备方法 [J]. 化工新型材料, 2001, 29(7): 1
6 Li X H, Guo S H, Su J, et al. Efficient raman enhancement in molybdenum disulfide by tuning the interlayer spacing [J]. ACS Appl. Mater. Interfaces, 2020, 12: 28474
doi: 10.1021/acsami.0c04151
7 Zhu M Y, Chen Q, Tong W J, et al. Preparation and application of Fe3O4 nanomaterials [J]. Prog. Chem., 2017, 29: 1366
朱脉勇, 陈 齐, 童文杰 等. 四氧化三铁纳米材料的制备与应用 [J]. 化学进展, 2017, 29: 1366
doi: 10.7536/PC170559
8 Yang M Q, Ji Y H, Liang Q, et al. Preparation, doping modulation and field emission properties of square-shaped GaN nanowires [J]. Acta Phys. Sin., 2020, 69: 167805
doi: 10.7498/aps.69.20200445
杨孟骐, 姬宇航, 梁 琦 等. 四方结构GaN纳米线制备、掺杂调控及其场发射性能研究 [J]. 物理学报, 2020, 69: 167805
9 Sun Q S, Ni C L, Yu Y C, et al. Design principle of all-inorganic halide perovskite-related nanocrystals [J]. J. Mater. Chem., 2018, 6C: 12484
10 Liu H G, Tian R Y, Jiang Y, et al. On the drastically improved performance of Fe-doped LiMn2O4 nanoparticles prepared by a facile solution-gelation route [J]. Electrochim. Acta, 2015, 180: 138
doi: 10.1016/j.electacta.2015.08.123
11 Xu X Y, Wang Y L, Wang R, et al. Creating carbon-oxygen bonds over TiO2 nanofibers for synergistic benefits of visible-light response and charge separation toward photocatalysis [J]. Adv. Mater. Interfaces, 2017, 4: 1600795
doi: 10.1002/admi.201600795
12 Bozlee B, Lian B, Kahn J, et al. Characterization of alkali-metal sols in diethyl ether. Visible extinction and surface-enhanced Raman spectra [J]. Chem. Phys. Lett., 1992, 196: 437
doi: 10.1016/0009-2614(92)85717-O
13 Bozlee B, Clark S, Marr C, et al. Characterization and surface-enhanced Raman spectroscopy of alkali metal sols [J]. J. Raman Spectrosc., 1996, 27: 75
doi: 10.1002/(SICI)1097-4555(199601)27:1<75::AID-JRS929>3.0.CO;2-E
14 Roginsky S, Schalnikoff A. A new method of production of colloid solutions [J]. Kolloid Z., 1927, 43: 67
doi: 10.1007/BF01751491
15 Tomaschewsky N. Concerning the manufacture of colloids from the condensation method of molecular rays [J]. Kolloid Z., 1931, 54: 79
doi: 10.1007/BF01422259
16 Modarres-Gheisari S M M, Gavagsaz-Ghoachani R, Malaki M, et al. Ultrasonic nano-emulsification—A review [J]. Ultrason. Sonochem., 2019, 52: 88
doi: S1350-4177(18)31269-0 pmid: 30482437
17 Baissac L, Buron C C, Hallez L, et al. Synthesis of sub-micronic and nanometric PMMA particles via emulsion polymerization assisted by ultrasound: Process flow sheet and characterization [J]. Ultrason. Sonochem., 2018, 40: 183
doi: S1350-4177(17)30120-7 pmid: 28359634
18 Behbahani E S, Ghaedi M, Abbaspour M, et al. Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques [J]. Ultrason. Sonochem., 2017, 38: 271
doi: S1350-4177(17)30106-2 pmid: 28633826
19 Jia Q P, Ma Z L, Han B, et al. Effects on SPR of Au/TiO2 by preparation methods [J]. J. Hebei Univ. (Nat. Sci. Ed.), 2020, 40: 385
贾群鹏, 马志领, 韩 冰 等. Au/TiO2的制备方法对其SPR的影响 [J]. 河北大学学报(自然科学版), 2020, 40: 385
20 Zhu W Z, Liu Y Q, Meng G. Preparation and characterization of nano-gold particles by seeding method [J]. Chin. J. Veter. Med., 2019, 55(10): 33
朱文壮, 刘轶群, 孟 赓. 纳米金颗粒的晶种法制备及表征 [J]. 中国兽医杂志, 2019, 55(10): 33
21 Li C X, Wang Z H. Applications of ultrasound in preparation of nanosized materials [J]. Chemistry, 2001, 64: 268
李春喜, 王子镐. 超声技术在纳米材料制备中的应用 [J]. 化学通报, 2001, 64: 268
22 Vyas N, Manmi K, Wang Q X, et al. Which parameters affect biofilm removal with acoustic cavitation? A review [J]. Ultrasound Med. Biol., 2019, 45: 1044
doi: 10.1016/j.ultrasmedbio.2019.01.002
23 Jiang R P. Effect rules and function mechanism of ultrasonic field on the solidification of high strength aluminum alloy [D]. Changsha: Central South University, 2014
蒋日鹏. 超声场对高强铝合金凝固过程的影响规律与作用机理研究 [D]. 长沙: 中南大学, 2014
24 Ma L. Mechanism for ultrasonic driving filling of liquid solder and acoustic cavitation [D]. Harbin: Harbin Institute of Technology, 2015
马 琳. 液态钎料超声驱动填缝机理及声空化作用研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
25 Sajjadi B, Raman A A A, Shah R S S R E, et al. Review on applicable breakup/coalescence models in turbulent liquid-liquid flows [J]. Rev. Chem. Eng., 2013, 29: 131
26 Kulawik-Pióro A, Tal-Figiel B. Influence of preparation method on size distribution of the dispersed phase of primary emulsions [J]. Chem. Eng. Technol., 2017, 40: 412
doi: 10.1002/ceat.201500746
27 Li X T, Gao X P, Li T J, et al. A experimental study of grain refinement by ultrasonic treatment during continuous casting [J]. Rare Met. Mater. Eng., 2007, 36: 377
李新涛, 高学鹏, 李廷举 等. 连铸过程中超声细晶技术研究 [J]. 稀有金属材料与工程, 2007, 36: 377
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[4] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[5] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[6] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[7] ZHANG Zhidong. Exact Solution of Ferromagnetic Three-Dimensional (3D) Ising Model and Spontaneous Emerge of Time[J]. 金属学报, 2023, 59(4): 489-501.
[8] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[9] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[10] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[11] JU Tianhua, SHU Nian, HE Wei, DING Xueyong. A Predicted Model for Activity Interaction Coefficient Between Solutes in Alloy Solutions[J]. 金属学报, 2023, 59(11): 1533-1540.
[12] ZHANG Weidong, CUI Yu, LIU Li, WANG Wenquan, LIU Rui, LI Rui, WANG Fuhui. Corrosion Behavior of GH4169 Alloy in NaCl Solution Spray Environment at 600oC[J]. 金属学报, 2023, 59(11): 1475-1486.
[13] ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. 金属学报, 2023, 59(11): 1541-1546.
[14] LI Huizhao, WANG Caimei, ZHANG Hua, ZHANG Jianjun, HE Peng, SHAO Minghao, ZHU Xiaoteng, FU Yiqin. Research Progress of Friction Stir Additive Manufacturing Technology[J]. 金属学报, 2023, 59(1): 106-124.
[15] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
No Suggested Reading articles found!